

Phase I Site Appraisal

10579 – Great Bear, Link 56 Deeside, Flintshire

for

Legat Owen

GBD-PPC-00-XX-RP-G-0001

July 2023

Phase I Site Appraisal 10579 – Great Bear, Link 56 for

Legat Owen

Revision	Date of issue	Comments	Prepared By	Checked By
0	31/07/2023	1 st issue	OB/OMD	НА

Should you have any queries relating to this document please contact:

Chris Storey
PPCP Limited T/A Patrick Parsons
St Pauls Place
St Pauls Square
Birmingham
B3 1FQ

T: +44 (0) 121 592 0000

E: chris.storey@patrickparsons.co.uk

Contents

1.0	Introduction	
2.0	Site Setting	
3.0	Summary of Previous Investigation	
4.0	Phase I Conceptual Model	7
5.0	Preliminary Recommendations	11
6.0	Conclusions	13

Appendix A Figures

Appendix B Historical Maps

Appendix C Environmental Data Reports

1.0 Introduction

1.1 Commission

Patrick Parsons (PP) has been appointed by Legat Owen (client) to produce a Phase I Site Appraisal, for their site at Great Bear, Deeside.

1.7 Proposed Development

It is understood that the site is to be developed to provide a 172,000sq ft commercial distribution building with associated yard and car park areas This area is composed of two phases of development including an extension to the west of the existing commercial building in the southern half of the site and a new commercial shed with areas of loading and parking areas in the north of the site. A plan showing the general layout of the proposed development is in Appendix A.

1.3 Limitations

This report has been prepared for the client and their appointed agents only and should not be relied upon by any third party without the written permission of Patrick Parsons. If any unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors do not owe them any Duty of Care or Skill. It is based on and limited to an assessment of the information and ground conditions identified here.

1.4 Aim of Phase I Site Appraisal

The client's specific requirements were to provide a Phase I Site Appraisal for the site supplemented with a new environmental data report. The principal objectives are as follows:

- Obtain information about the likely soil and groundwater conditions within the area of the site;
- Determine the possible ground related geotechnical and contamination hazards within the site boundaries that may affect any future proposed development;
- Provide advice on further works required for the cost-effective reduction of risks to the development and procedures likely to satisfy regulators.

Information Sources

This Phase I Site Appraisal is based on published geological and environmental information supplemented by historical mapping (Appendix B) and an environmental data report (Appendix C). Data from a site investigation report undertaken in April 2022 by CC Geotechnical Ltd reference: CCG-C-21-12803-rev2 has been used where applicable.

2.0 Site Setting

2.1 Site Description

The site is a roughly rectangular shaped parcel of land covering 13.62ha that is bound by Weighbridge Road to the north and Deeside Industrial Park on the southern, western and eastern boundaries of the site. The site is located approximately 10.6km north-west of Chester town centre located at OS grid reference 331237, 371779 and the nearest postcode is CH5 2LL.

The site is occupied by two large rectangular shaped commercial / industrial units one occupying the southern half of the site, and the other located centrally. Large portions of the site are laid to tarmac or concrete hardstanding which are used as loading and parking areas for commercial vehicles. Undeveloped land occupies the northern third of the site, which is currently used as staff parking and storage. The site is predominantly at a level gradient, however, an offsite drain running along the western boundary of the site is noted, this drainage run is approximately 3.20m below the existing site level.

A site location plan is presented in Appendix A.

2.2 Site History

Year	Site	Surrounding Area
1869	The site is marshland in the northern section of the site. With the southern two thirds of the site within an area affected by tidal influence.	The site is in a rural setting. Undeveloped marshland and saltings are recorded to surround the entire site.
1897- 1898	The area of the site which is recorded as affected by tidal influences has reduced in size. Large parts of the site have undergone land reclamation.	Majority of the surrounding land has now become reclaimed land with some remnants of marshland in the south of the site. Adjacent to the western boundary the North Wales and Liverpool railway has been constructed.
1909- 1913	A number of drainage ditches are recorded crossing the site, predominantly in an east to west orientation.	There are numerous drainage ditches northeast of the site within 500m of the site.
1938	No significant changes are recorded.	No significant changes are recorded.
1953- 1954	No significant changes are recorded.	Development 200m to the northwest of the site is recorded.
1960	A large disused works is recorded consisting of four structures occupying the eastern site areas. Light railway lines are recorded along the western boundary of the site. A road is mapped on the north boundary of the site.	Significant amounts of industrial development are recorded to the west of the site. With a significant number of warehouses, chimneys, drains, reservoirs and railway lines. A works is recorded adjacent to the northern boundary with two recorded ponds.
1969- 1970	The works building is no longer recorded as "disused".	No significant changes are recorded.
1981	Two additional buildings are recorded within the southwestern corner of the site.	No significant changes are recorded.
1992	The two buildings noted in the 1981 mapping are no longer recorded.	There is a significant reduction in the number of buildings to the west of the site, with a number of warehouses no longer recorded. Industrial development is recorded to the east of the site with Deeside Industrial Park recorded. A large reservoir is recorded approximately 450m to the northeast of the site.

Year	Site	Surrounding Area
2001	The large warehouse building appears to have been demolished and a new	No significant changes are recorded.
	have been demolished and a new warehouse has been constructed in the centre of the site.	
2010	The square warehouse occupying the northeastern corner of the site is no longer recorded.	Infill industrial development is noted within Deeside Industrial Park.
2023	A rectangular extension to the southeastern corner of the large warehouse structure occupying the centre of the site has been noted.	No significant changes are recorded.

The historical maps reviewed are represented in Appendix B.

2.3 Unexploded Ordinance (UXO)

The site has been classified as low risk of UXO. As such no further mitigation measures are required.

The site has been recorded to be covered by artificial deposits / Made Ground. As such, Made Ground should be expected across the site.

The site is recorded to be underlain by Superficial Deposits of Tidal Flat Deposits overlying the bedrock geology of the Kinnerton Sandstone Formation.

There are 3no. cable percussive boreholes recorded on-site from the site investigation undertaken in April 2022 drilled to a maximum depth of 14.00m bgl. Made Ground was recorded to a depth of between 0.25m and 3.50m bgl and consisted of a light brown silty sand. Beneath the Made Ground, medium dense to dense greyish brown silty sand was recorded to a depth of 14.00m begl.

Mining and Quarrying

There are 6no. surface ground workings recorded within 250m of the site, the closest being a water body recorded on site in 1938. The remaining surface ground workings comprise ponds and an unspecified pit ranging between 141m northwest and 206m northwest from the site.

There are 4no. records of non-coal mining within 1000m of the site, the closest 91m south related to bedded Iron Ore, the rest of the records relate to Iron Ore and Vein Minerals ranging from 711m west to 823m west.

There are no records of BritPits within 500m of the site.

There are 2no. records of underground workings within 1000m of the site, both are unspecified workings 893m southwest in 1960 and 1969.

There are no historical mineral planning areas within 500m of the site.

The site is not recorded to be within a coal mining reporting area as designated by the Coal Authority (CA).

2.5 Radon

The site is not recorded within a Radon Affected Area and as such radon protection measures are not required for new properties on the site.

2.7 Hydrogeology and Hydrology

The Superficial Deposits beneath the site are recorded to be a Secondary Undifferentiated Aquifer. The bedrock beneath the site is recorded to be a Principal Aquifer. The site is not located within a Source Protection Zone.

There are 7no. records of groundwater abstractions within 2000m of the site, the closest being a historical record relating to pollution remediation 475m east of the site. There are no recorded potable abstractions within 2000m of the site.

There is 1no. recorded surface water abstraction within 2000m of the site. This record is 444m north of the site and is associated with spray irrigation.

The are 11no. surface water features within 250m of the site, 5no. located on-site relating to an inland river not influenced by normal tidal action.

The eastern side of the site is recorded to be in a Flood Zone 2 and part of the northern boundary is recorded to be in a Flood Zone 3.

2.8 Environmental Data

There are no recorded LA historical landfill or EA/NRW landfill sites within 500m of the site.

There are 2no. of historical waste record within 500m of the site. One is located on-site relating to a recycling/recovery plant for municipal solid waste.

There are 57no. waste exemption records within 500m of the site. There are 21no. waste exemption records located on-site, relating to burning waste in the open, treatment of waste wood and waste plant, storage of waste, deposit of agricultural waste, spreading waste on agricultural land and others.

There are 57no. recorded historical industrial land uses within 500m of the site. There are 13no. records on-site relating to railway sidings, unspecified commercial/industrial, unspecified works, unspecified disused works, and airfield ranging from 1948 to 1992.

There are 24no. records of historical tanks within 500m of the site. There are 3no. records of historical tanks recorded on-site relating to unspecified tanks ranging from 1984 to 1997.

There are no historical garages located within 500m of the site.

There are 25no. records of recent or current industrial land use within 250m of the site. There are 6no. records on-site relating to industrial coatings and finishings, new vehicles, catering and non-specific food products, office and shop equipment, industrial engineers and electrical features.

There are no records for current or recent petrol stations within 500m of the site.

There are 2no. licensed pollutant release (Part A(2)/B) records within 500m of the site. One record on-site relates to respraying of road vehicles, whilst the other relates to engineering works located 393m SE.

There are no List 1 Dangerous Substance records within 500m of the site. There are no List 2 Dangerous Substance records within 500m of the site.

There is 1no. record for Pollution Incidents (EA/NRW) within 500m of the site. This relates to multiple pollutants on 10/05/2013 with a worst-case Category 3 impact on air and a Category 4 impact on land.

The environmental data report obtained for the site is presented in Appendix C.

3.0 Summary of Previous Investigation

3.1 Previous Phases of Ground Investigation

A previous phase of ground investigation has been completed along the proposed extension in the south-west of the site by CC Geotechnical Ltd in April 2022 report reference: CCG-C-21-12803-rev2. Ground conditions including laboratory and in-situ testing from the 2022 report have been summarised below. This data has been used in conjunction with the desk study data to complete the risk assessments and in-turn the conceptual site model in Section 4.0.

3.2 Ground Conditions

Made Ground was recorded across the investigation area, comprising grey slightly silty sandy gravel of cinders and slag to a maximum recorded depth of 0.60m bgl (WS03), and reworked fill of light brown slightly silty fine to medium sand to a maximum recorded depth of 3.50m bgl (BH1).

Below the Made Ground the natural strata was generally recorded to comprise dense grey slightly silty fine sand becoming slightly gravelly below depths of between 5.00m and 12.00m bgl, to a maximum recorded depth of 14.00m bgl (BH3).

SPT N-values within the natural granular soils between 1.00m and 14.00m bgl were recorded between 27 and 45 with a general increase with depth.

3.3 Hydrogeology

Groundwater was recorded during the investigation and in the subsequent monitoring programme. Groundwater was recorded between depths of 2.42m bgl and 2.86m bgl across the investigation area.

Identified Contamination and Laboratory Testing

No visual or olfactory evidence of gross contamination was recorded in any of the exploratory locations.

A programme of soil chemical analyses was undertaken at a UKAS / MCERTS accredited laboratory as follows:

- 5no. samples of Made Ground soils on a broad-spectrum suite including pH, metals, non-metals, heavy metals, speciated PAHs, speciated TPHs and asbestos.
- 3no. samples of Made Ground soils were analysed for PCBs.

All testing returned below the respective guideline criteria used and indicated that there was no risk to human health from the soils tested.

4.0 Phase I Conceptual Model

4.1 Initial Conceptual Model and Preliminary Risk Assessment

The preceding desk study data and supplementary site investigation data has been assessed and a conceptual model produced in accordance with Land Contamination Risk Management (LCRM) guidance document. LCRM provides a technical framework for identifying and remediating contamination through the application of a risk management process.

The process requires the development of an initial conceptual site model (CSM) and preliminary risk assessment are based on information derived from the desk study to provide a qualitative assessment of risk posed to human health and environmental receptors from potential on and off-site sources of contamination as defined within Part IIA of the Environmental Protection Act (1990).

The CSM provides the relationship between the following three criteria:

- The presence of substances that may cause harm (source);
- The presence of a plausible pollutant linkage between the source and receptor (pathway);
- The presence of a receptor which may be harmed (receptor).

If all three criteria are present, or considered likely to be present at a site, they are identified as Potential Contaminant Linkages (PCLs) and they should be considered within the risk assessment process. For an 'unacceptable risk' to exist, it must be established that contamination has the potential to cause harm to susceptible targets, which requires scientific and technical knowledge.

EA R&D66 (2008) includes a risk classification system based on classification of consequence and probability. The table below shows a risk matrix, in which the likelihood or probability of each pollutant linkage being realised is ranked against the severity of the consequences. The result is the risk classification, based upon which risk management actions can be implemented. The individual sources, pathways and receptors identified are assessed against this risk matrix; potential pollutant linkages and associated risks are recorded:

			Severity of	Consequence	
		Severe	Medium	Mild	Minor
ollutant	High Likelihood	Very High risk	High risk	Moderate risk	Moderate/ Low risk
of pollt	Likely	High risk	Moderate risk	Moderate / Low risk	Low risk
_ ~	Low Likelihood	Moderate risk	Moderate / Low risk	Low risk	Very Low risk
Probability lin	Unlikely	Moderate / Low risk	Low risk	Very Low risk	Very Low risk

The definitions of the risk terminology are taken from CIRIA report C552 and are summarised as follows:

- Very High risk: there is a high probability that severe harm could arise to a designated receptor from an identified source, or there is evidence that severe harm to a designated receptor is currently occurring. This level of risk is likely to result in a substantial liability and urgent investigation (if not already undertaken) and remediation is likely to be required.
- High risk: harm is likely to arise to a designated receptor from an identified source. This
 level of risk is likely to result in a substantial liability, urgent investigation (if not already
 undertaken), short term remediation may be necessary are likely to be required in the
 long term.
- Moderate risk: it is possible that harm could arise to a designated receptor from an identified source. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required, and some remediation may be required in the long term.
- Low risk: it is possible that harm could arise to a designated receptor from an identified source, but it is likely that this harm, if realised, would at worst normally be mild. Further investigation should be considered, but is not necessarily required, to confirm the absence of contamination.
- **Very Low risk:** there is a low possibility that harm could arise to the receptor. In the event of such harm being realised it is not likely to be severe. Further investigation should be considered, but is not necessarily required, to confirm the absence of contamination.

A pollutant linkage must be established before tests for probability and consequence are applied. If there is no pollutant linkage, then there is no potential risk and there is no need to apply tests for probability and consequence. The risk assessment needs to include a logical and transparent system to define categories of severity of consequence and probability of occurrence. The initial conceptual model and preliminary risk assessment are discussed below.

4.2 Potential On-site Sources of Contamination

There are onsite records of Made Ground. Given the industrial and commercial history of the site, contamination will be expected. Examples include:

- The historical tanks located on site.
- Licensed pollutant release (A(2)/B) relating to respraying of road vehicles located on site.
- The recycling/recovery plant relating to municipal solid waste located on site.

Asbestos containing materials (ACM) from fly tipping of ACMs cannot be discounted.

4.3 Potential Offsite Sources of Contamination

A potential off-site source of contamination that could affect the proposed development include the reclaimed marshland surrounding the site.

Offsite Made Ground is also noted as a potential source of ground gas which could impact the site.

 Offsite Made Ground producing hazardous soil-gases may be present from infilled ponds and adjacent commercial developments.

Contaminants of concern

The contaminants of concern expected to be present on-site are likely to include heavy metals, polyaromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPHs) and asbestos.

A. Pathways

The potential pathways for migration of contamination sources to potential receptors relevant to this site are as follows:

Human Health

- Direct contact with and/or incidental ingestion of contaminated soils;
- Dermal contact, inhalation and/or ingestion of dust derived from contaminated soils;
- Migration of hazardous soil-gases via permeable strata or ducts/drains into future buildings.

Controlled Waters

- Leaching of contamination with subsequent vertical and/or lateral migration of mobile contaminants into controlled water receptors;
- Migration of contamination via preferential pathways e.g. service runs.

Buried Services/Property

- Direct contact of contaminants with existing or future buried services;
- Migration of hazardous soil-gases via permeable strata or ducts/drains into enclosed spaces.

4.5 Receptors

The following site-specific receptors are considered relevant:

Human Health

- Site users end-users of the proposed commercial development;
- Construction workers personnel involved in the redevelopment works;

Controlled Waters

- Underlying superficial Secondary Undifferentiated Aquifers and Principal bedrock Aquifer;
- Surface water drain to west of site boundary.

Buried Services / Property

Building fabric and foundations/piles.

4.5 Conceptual Site Model

A preliminary qualitative assessment of the identified PCLs and associated risk ratings has been completed and a summary is provided in the Table on the next page.

lity Risk Assessment and Justification	Low/Moderate Risk – Made Ground expected to be present on-site. However, the proposed development of the site includes limited areas of soft landscaping which will be managed by the building management limiting the pathway between any potential contamination and end users.	Low Risk - Construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.		Low Risk – On-site deposits of Made Ground typically comprising reworked natural soils. Considered unlikely that levels of volatile vapours and ground gases will be high enough to represent acute risks or lead to significant impact. However, construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.	Moderate Risk —Asbestos is unlikely to be on-site due to the sites historical use. Asbestos including asbestos containing materials (ACMs) may also have been fly tipped or introduced on-site by windblown processes. However, the proposed development of the site includes very limited areas of soft landscaping which will be managed by the building management limiting the pathway between any potential contamination and end users.	Moderate Risk - Construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.	Low/Moderate Risk: Risk assessed as Low / moderate due to the low sensitivity of the shallow groundwater due to the site location within a predominantly commercial / industrial site setting where potable extractions are unlikely to be utilised in the future.	Low/Moderate Risk: Risk assessed as Low / moderate due to the low sensitivity of the shallow groundwater due to the site location within a predominantly commercial / industrial site setting where surface water extractions are unlikely to be utilised in the future.	Low/Moderate Risk: Risk assessed as Low / moderate as contamination will likely be intercepted and attenuated by the shallow groundwater within the superficial deposits.	Low Risk: Sources of contamination may be present on site however it is considered unlikely that UKWIR threshold values would be exceeded.
nce Probability	Low Likelihood	Low Likelihood	Low Likelihood	Unlikely	Low Likelihood	Low Likelihood	Likely	Likely	Low Likelihood	Low Likelihood
Consequence	Medium	Mild		Medium	Severe		Mild	Mild	Medium	Mild
Receptor	Future site user/worker	Site construction worker	Future site user/worker	Site construction worker	Site user/worker	Site construction worker	Groundwater within superficial deposits (Secondary Undifferentiated Aquifer)	Surface Water Drain	Groundwater within bedrock (Principal Aquifer)	Future site user/worker
Pathway	Dermal contact, inhalation and ingestion of	contaminants in soil and soil derived dust	Inhalation of volatile	soil vapours and ground gas	Inhalation of asbestos free fibres		Leaching of contaminants from	soil and vertical migration into groundwater		Permeation through water pipes of shallow
Source	sources – Ground on ociated with ustrial and precial pments and ial activity general ininants to heavy PAHs, TPHs pestos ining als (ACM) y tipping of annot be tted. sources – Ground ding the atting to off- mmercial / ial ponds. Il ponds. Il ininants to heavy PAHs, TPHs ponds. Il ininants to heavy PAHs, TPHs									

Page | 10 10579 – Great Bear, Link 56

5.0 Preliminary Recommendations

5.1 Contamination and Remediation

As detailed within the CSM, several pollutant linkages have been identified at the site. Given that proposed development of the site includes limited areas of soft landscaping there will not be a pathway between any potential contamination and end users with respect to dermal contact, inhalation and ingestion of contaminants in soil and soil derived dust. For the most part a low to moderate risk has been assigned in term of human health, given that there will be a limited pathway between any potential contamination and end users with respect to dermal contact, inhalation and ingestion of contaminants in soil, soil derived dust and asbestos.

Low to moderate risks have been identified with respect to controlled waters as onsite sources of made ground are recorded in the environmental data and the potential for reworked natural soils are likely to be encountered. The underlying ground conditions are granular in nature which will act as a potential pathway to the underlying receptors.

A ground investigation will be required to confirm this assessment, the scope of which is outlined in Section 5.

It should be noted that the following comments are based on the findings of this desk study and should be confirmed by intrusive investigation and chemical analysis. At this stage, it should be assumed:

- Any new areas of proposed areas of soft landscaping may require a minimum 300mm thick clean-capping layer;
- Gas protection measures may be required if harmful levels of soil-gas are encountered during the site investigation and subsequent gas monitoring programme;
- Source removal may be required if grossly contaminated soils are encountered.

5.2 Geotechnical Considerations

It should be noted that the following comments and recommendations are based on the findings of this desk study. Generally, it is considered:

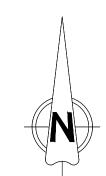
- The ground conditions are likely to comprise Made Ground overlying predominately granular superficial soils of Tidal Flat Deposits, overlying the bedrock geology of the Kinnerton Sandstone Formation comprising sandstone;
- Traditional pad foundations may be suitable for the development provided significant thicknesses of made ground or low strength soils are not present; however, an alternative foundation solution may be required if low bearing capacity soils are encountered at shallow depth:
- Given the granular nature of the on-site superficial soils a soakaway drainage strategy is likely to be feasible for the proposed development subject to completion of in situ permeability testing.

5.3 Site Investigation Undertaken on Proposed Southern Extension.

A previous phase of ground investigation has been completed across the southwestern extents of the larger site area covered by this Phase I Site Appraisal report, this investigation was undertaken by CC Geotechnical in April 2022 report reference: CCG-C-21-12803. The ground conditions and testing have been reviewed and it is considered that the site investigation has collected the relevant data with a sufficient testing density to assess the risk to human health and controlled waters and have collected sufficient data to provide geotechnical recommendations regarding the proposed building extension within the southwestern corner of the larger site area.

6.0 Conclusions

Further works will be necessary to establish a ground model and confirm the underlying ground conditions to confirm the recommendations detailed in Section 4 for the remaining site areas and proposed structures in the north of the larger site area and should generally comprise:


- A window sampling borehole investigation to establish the sub-surface conditions, collect samples for analysis and permit the installation of ground gas monitoring wells;
- Chemical analysis of soils followed by risk assessment so that the risk to human health and controlled waters can be determined;
- Geotechnical and geochemical soils testing of the founding strata to assess strength and suitable grade(s) of buried concrete.

This document should be submitted to the Planning Department of the Local Authority for comment and approval.

Appendix A Figures

this drawing and design is the copyright of aja architects IIp and must not be reproduced in part or in whole without prior written consent, contractors must verify all dimensions on site before commencing work or preparing shop drawings If in doubt ASK.

Where this drawing contains any Ordnance Survey mapping material, it has been reproduced under license number 100052278.
Ordnance Survey © Crown copyright

Schedule of Accommodation All areas are approximate gross internal

Unit 1 (approx footprint)

Existing 30,655 sq.m. 329,970 sq.ft. 7,695 sq.m. 82,830 sq.ft. Extension 38,350 sq.m. 412,800 sq.ft. Total

Car Parking (maxed out) 423 spaces

22.8 acres 9.22 ha. Plot Area

Unit 2

Warehouse: 163,600 sq.ft. 15,200 sq.m. **Two Storey Offices** 800 sq.m. 8,600 sq.ft. 172,200 sq.ft. Total 16,000 sq.m.

Car Parking (1 per 100 sqm) 167 spaces

Plot Area 8.04 acres 3.25 ha.

Gross Site Area (red line) 32.73 acres 13.25 ha.

no. date

aja architects Ilp 1170 Elliott Court Herald Avenue

Coventry Business Park E: aja@aja-architects.com COVENTRY CV5 6UB W: www.aja-architects.com AJA Architects is the trading style of AJA Architects Consulting limited (a limited compan no. 10692795) and AJA Architects LLP (a limited liability partnership registered in England No. OC326721)

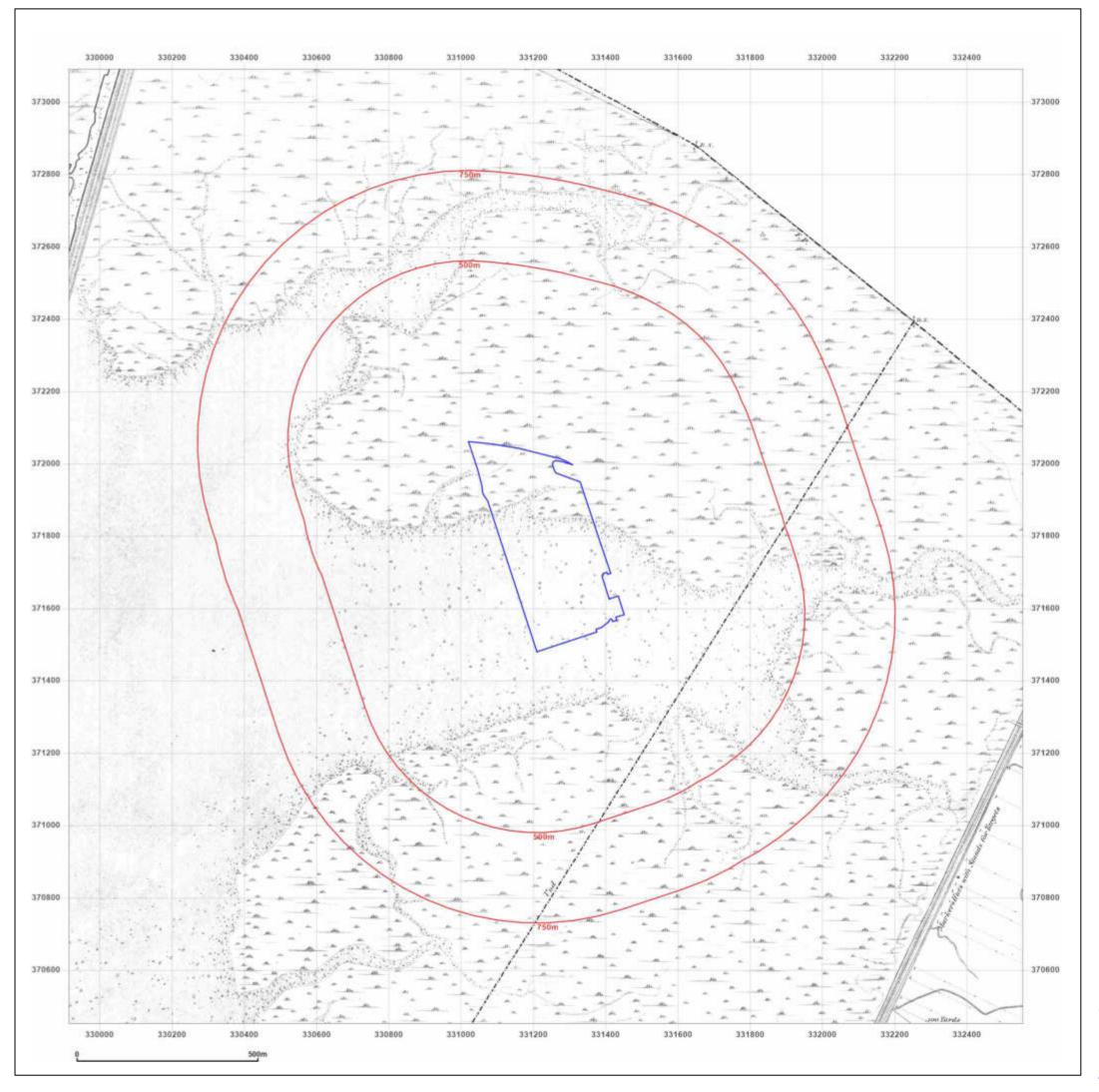
T: 024 7625 3200 F: 024 7625 3210

Legat Owen

Great Bear

Link 56 Deeside

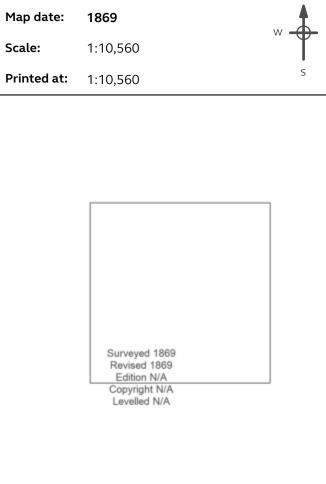
drawing


Indicative Site Plan Option B

sc a le	1:1000 @ A1	drawn	rp w	
checked	sp p	date	20.10.21	

6850-008

Appendix B Historical Maps


EMAPSITE™

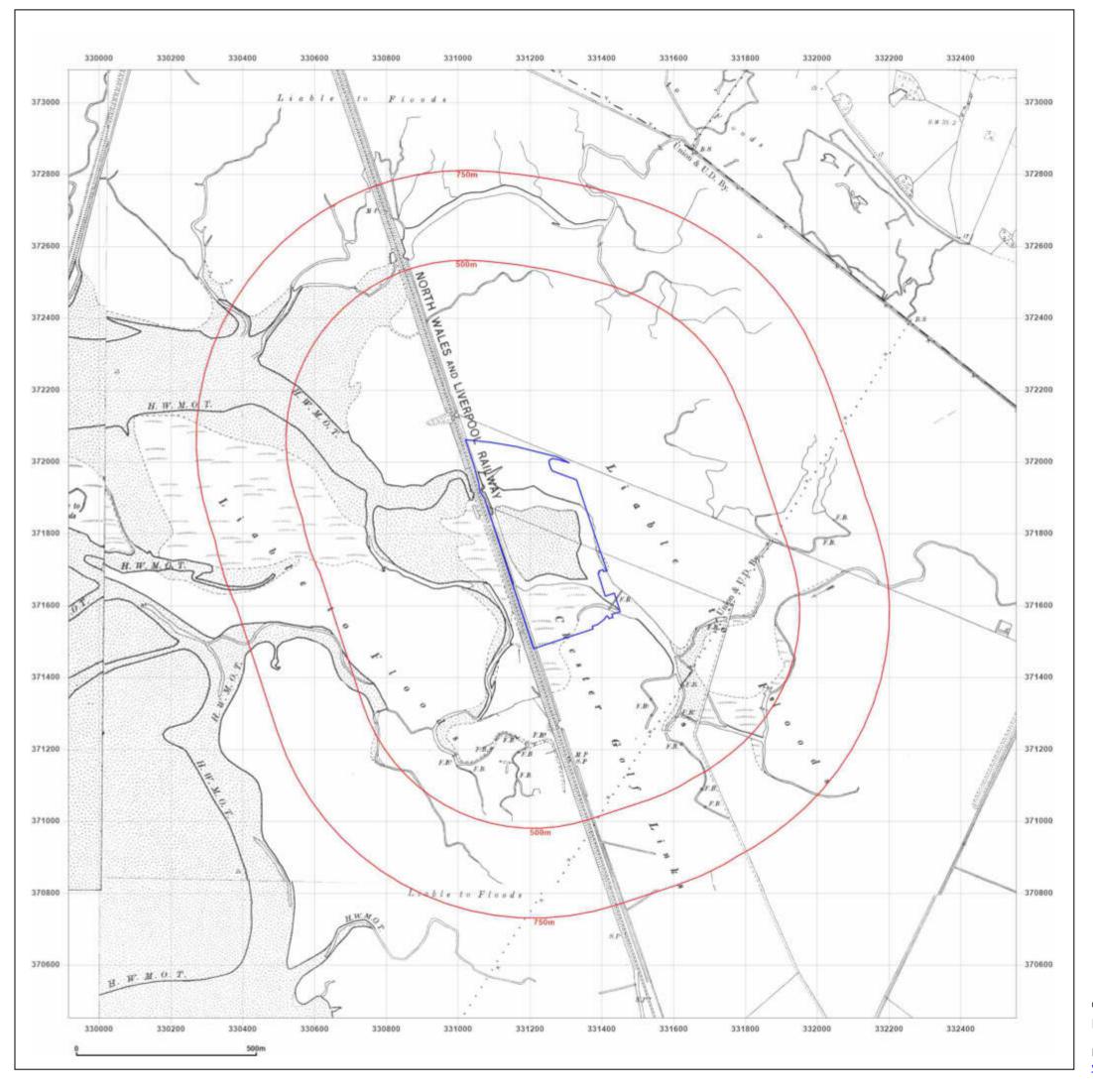
Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 **Report Ref:** EMS-874130_1118693 331234, 371771 **Grid Ref:**

Map Name: County Series

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

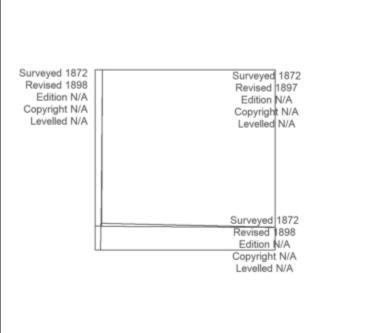
© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

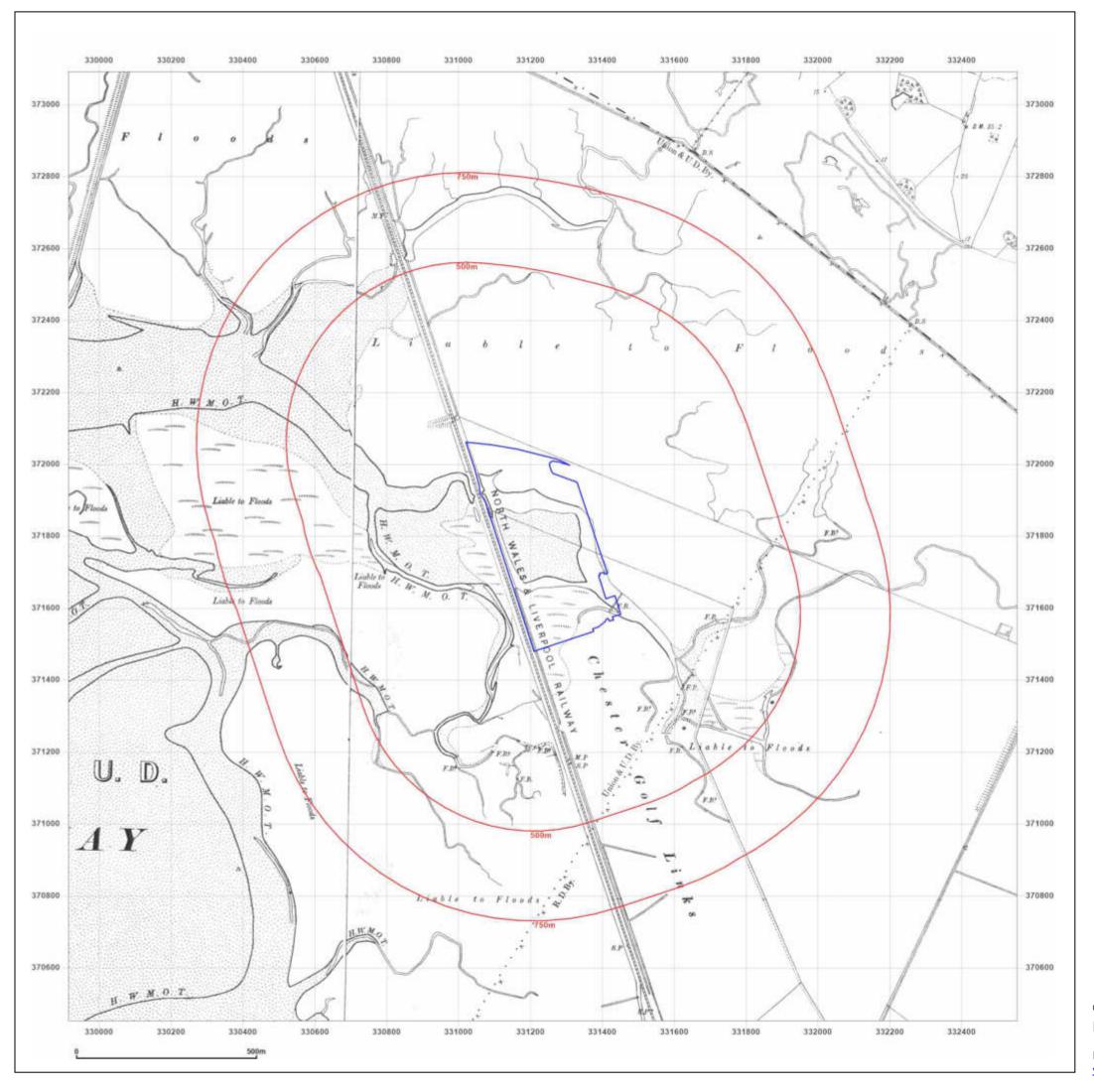
Map Name: County Series

Map date: 1897-1898

Scale: 1:10,560

Printed at: 1:10,560

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

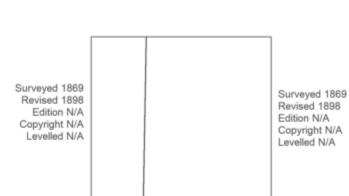
© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

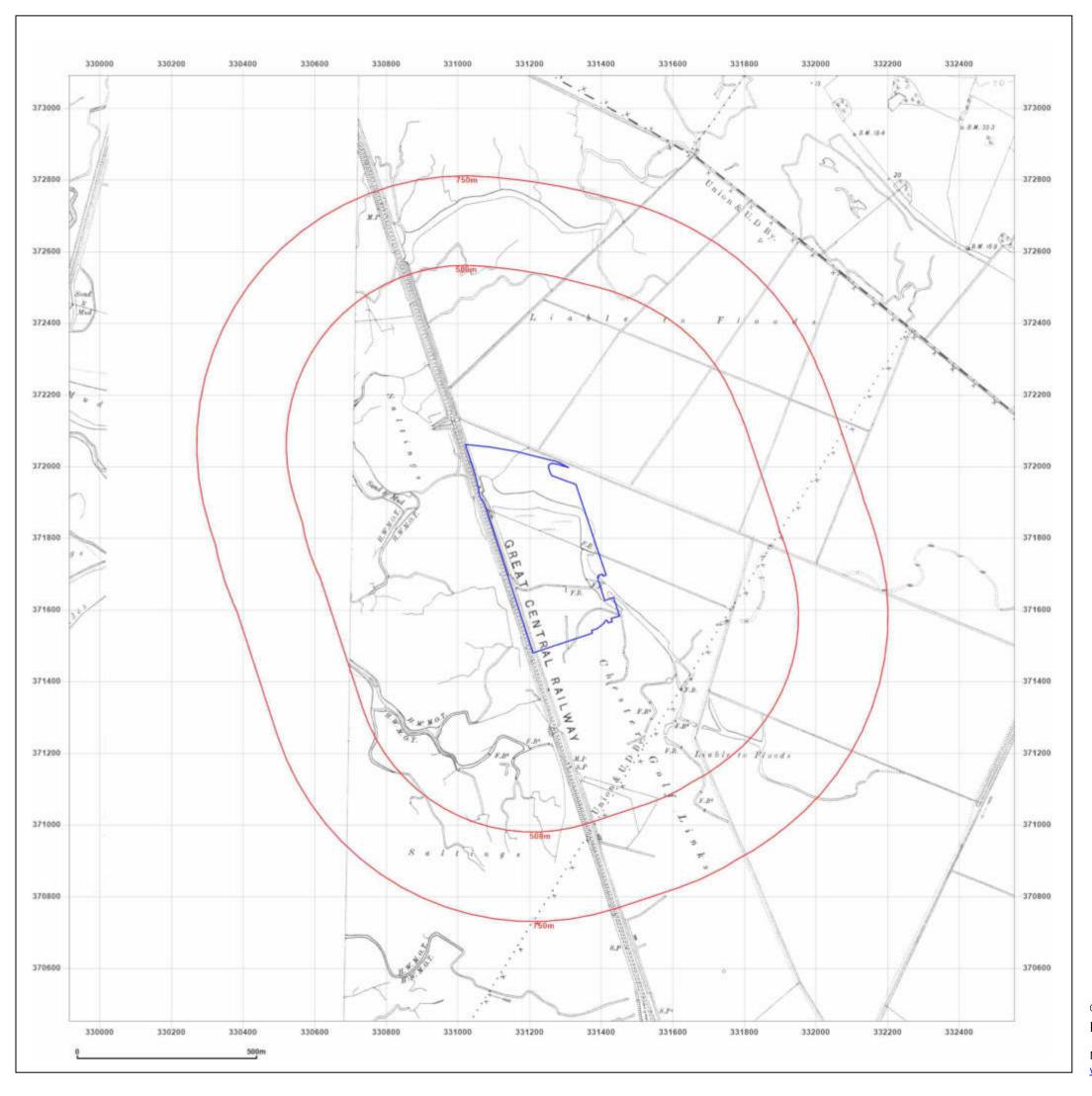
Map Name: County Series

Map date: 1898

Scale: 1:10,560

Printed at: 1:10,560

Produced by Groundsure Insights www.groundsure.com



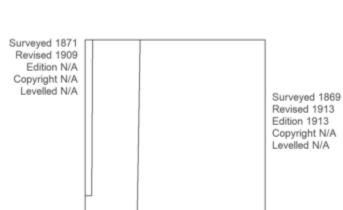
Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

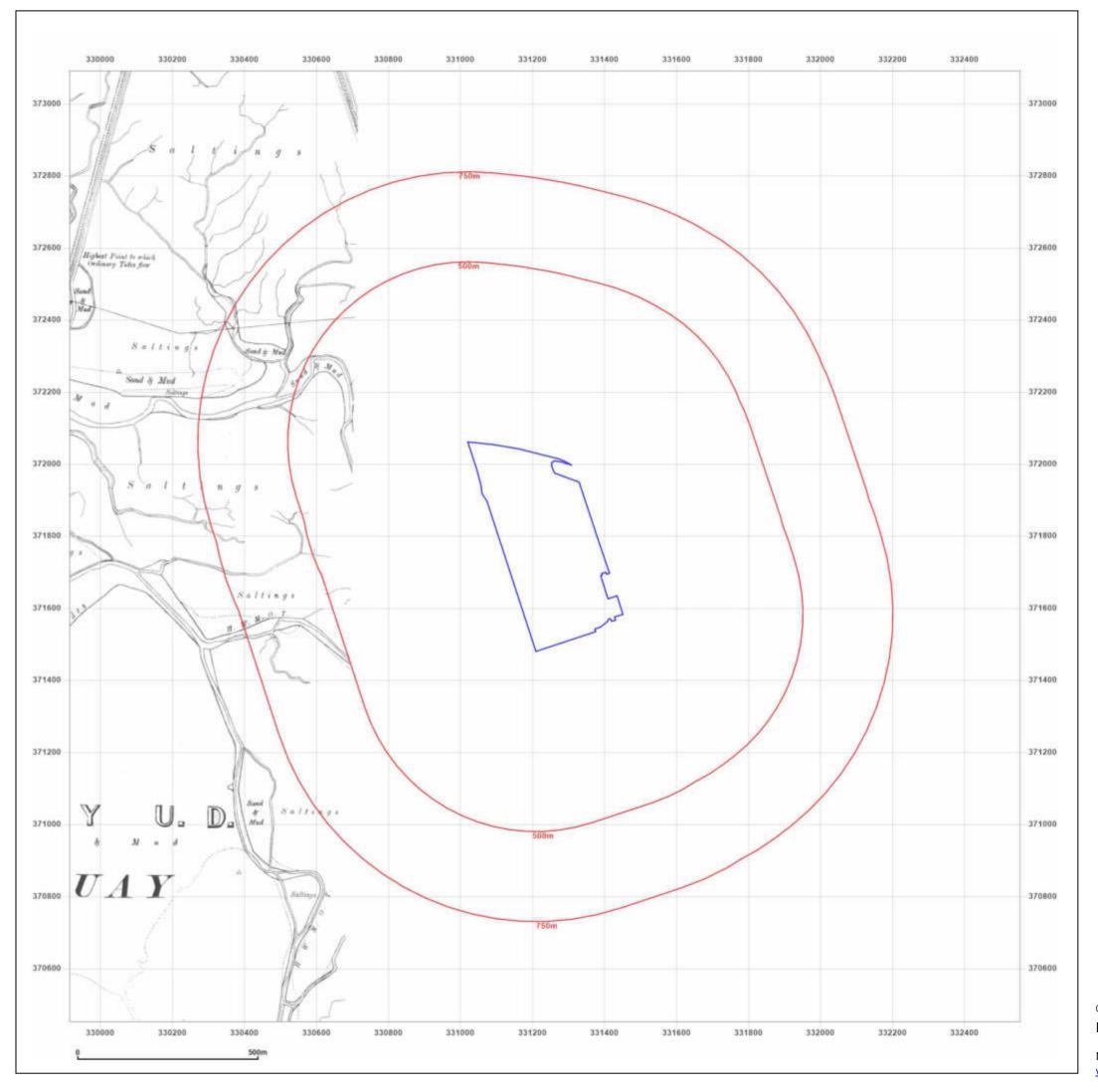
Map Name: County Series

Map date: 1909-1913

Scale: 1:10,560

Printed at: 1:10,560

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

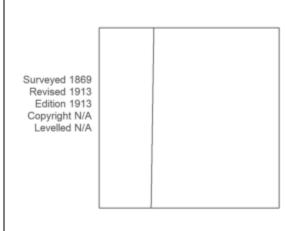
© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

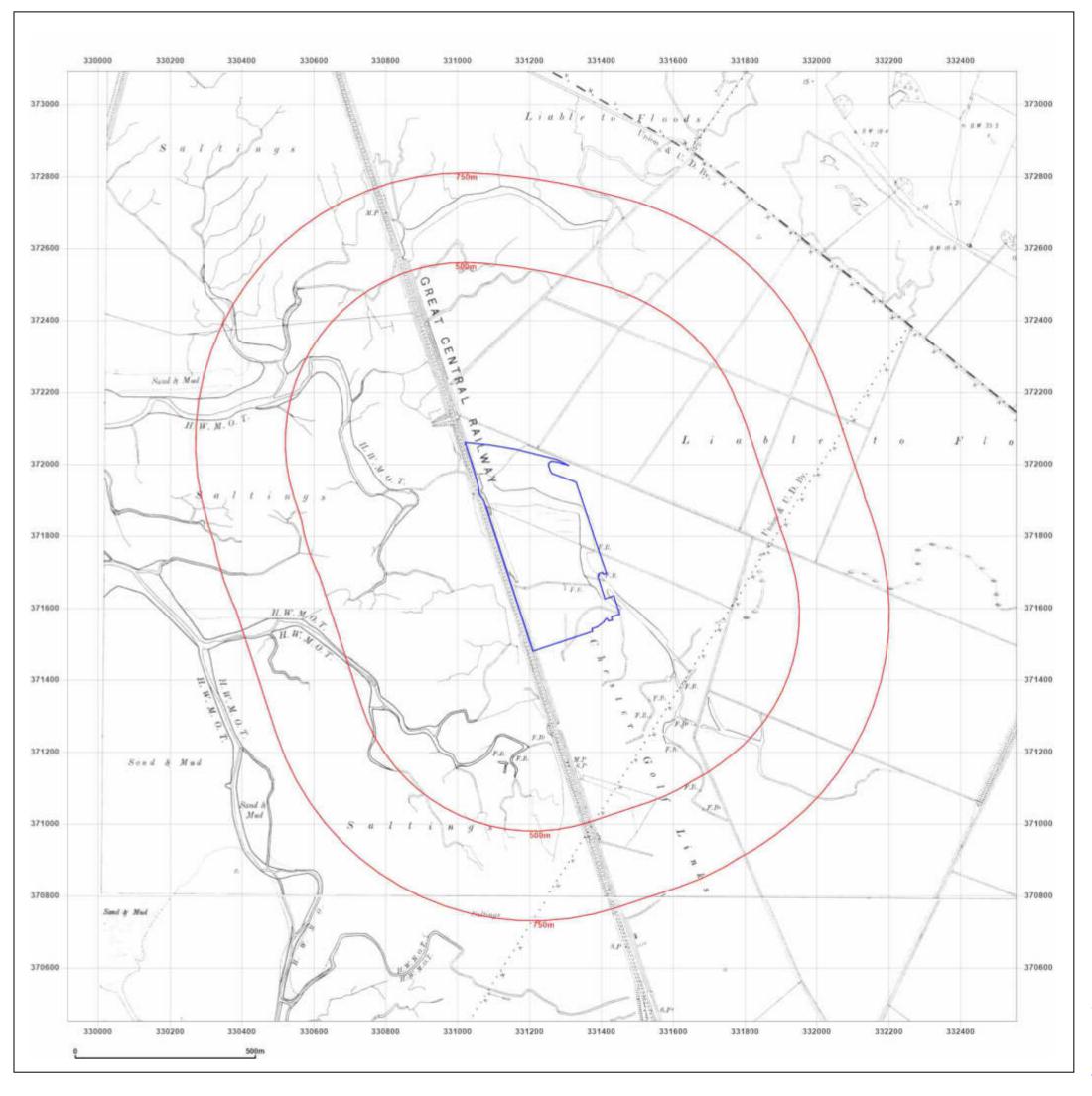
Map Name: County Series

Map date: 1913

Scale: 1:10,560

Printed at: 1:10,560

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

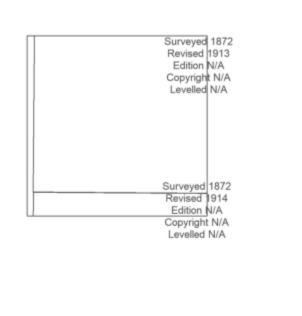
© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: County Series

Map date: 1913-1914

Scale: 1:10,560

Printed at: 1:10,560

Produced by Groundsure Insights www.groundsure.com



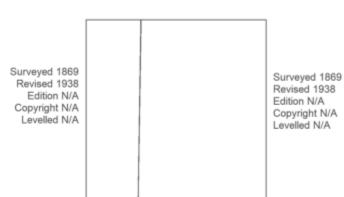
Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: County Series

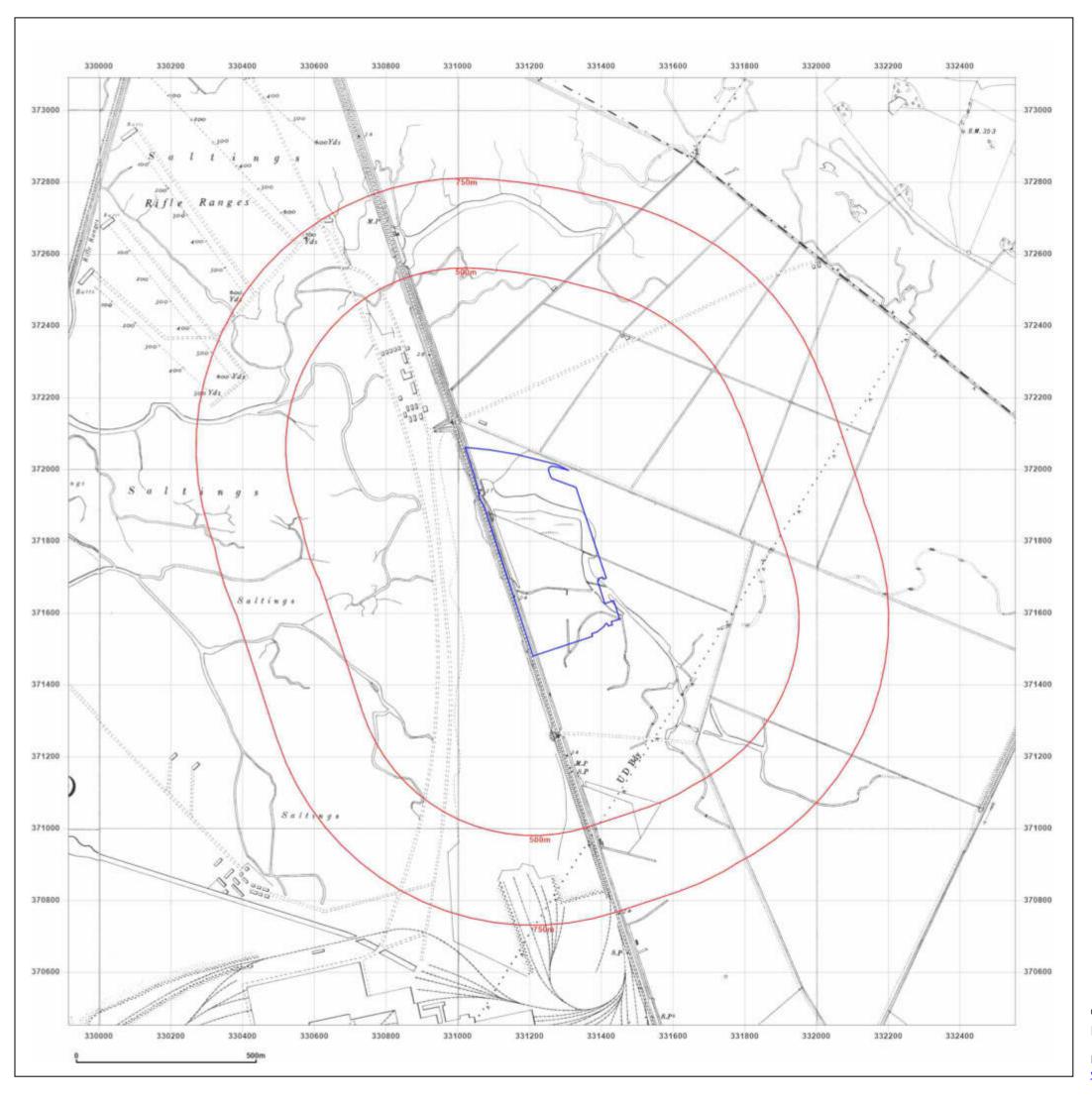
Map date: 1938

Scale: 1:10,560

Printed at: 1:10,560

Groundsure

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: Provisional

Map date: 1953-1954

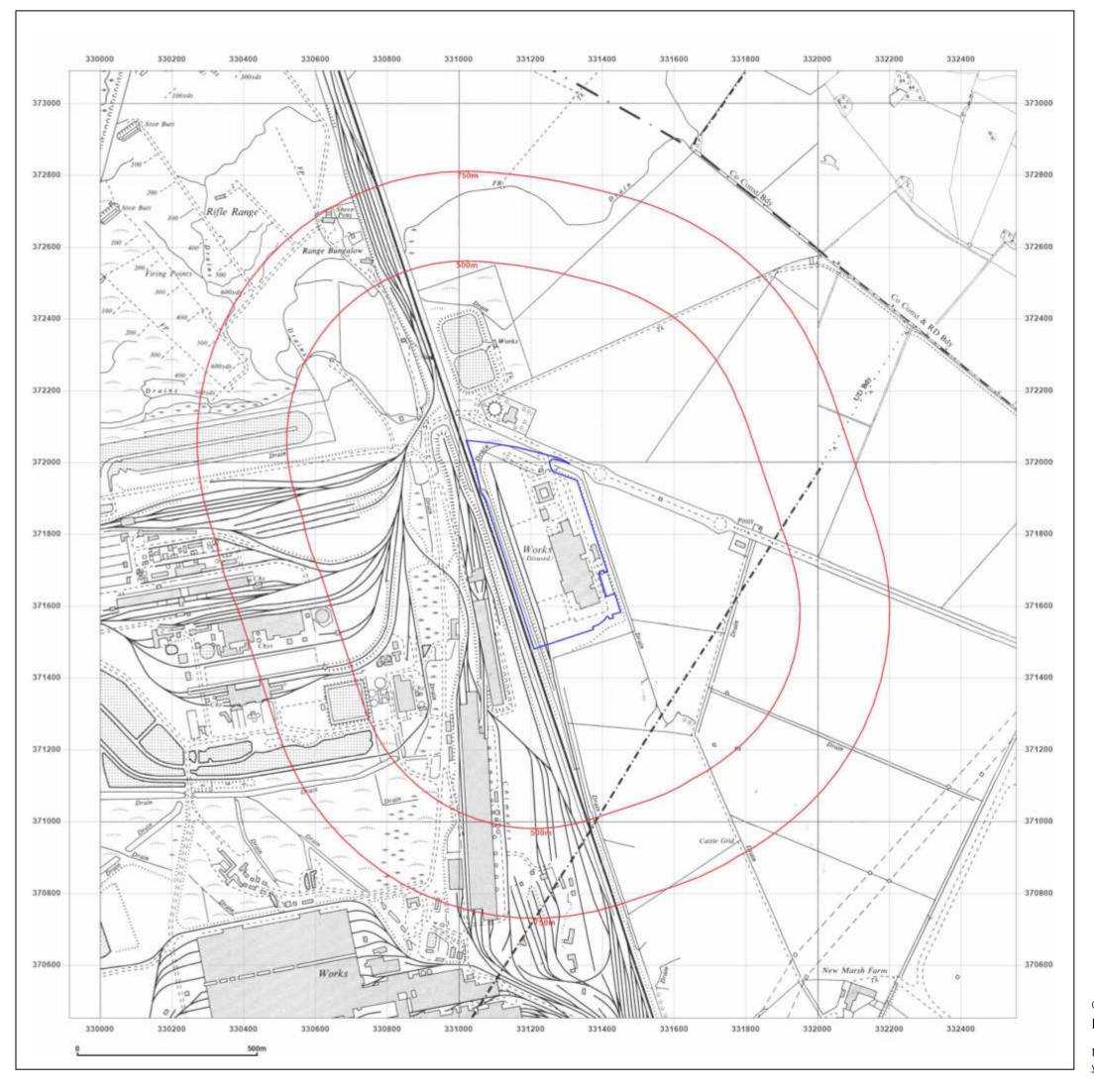
Scale: 1:10,560

Printed at: 1:10,560

Surveyed N/A
Revised 1953
Edition N/A
Copyright 1954
Levelled N/A

Surveyed N/A
Revised 1953
Edition 1954
Copyright N/A
Levelled N/A

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: Provisional

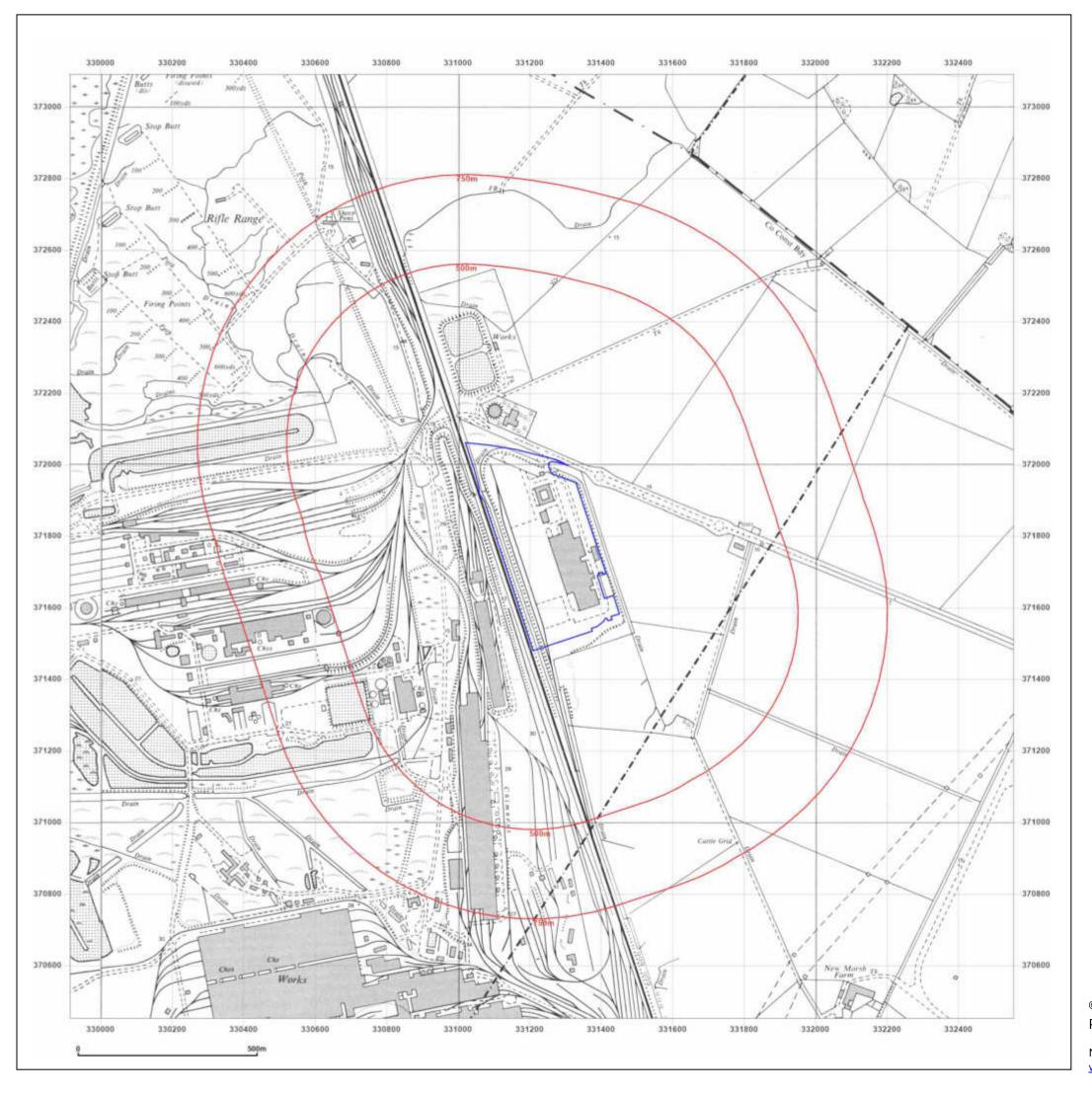
Map date: 1960

Scale: 1:10,560

Printed at: 1:10,560

Surveyed 1872
Revised 1960
Edition N/A
Copyright N/A
Levelled N/A

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Site Details:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: Provisional

Map date: 1969-1970

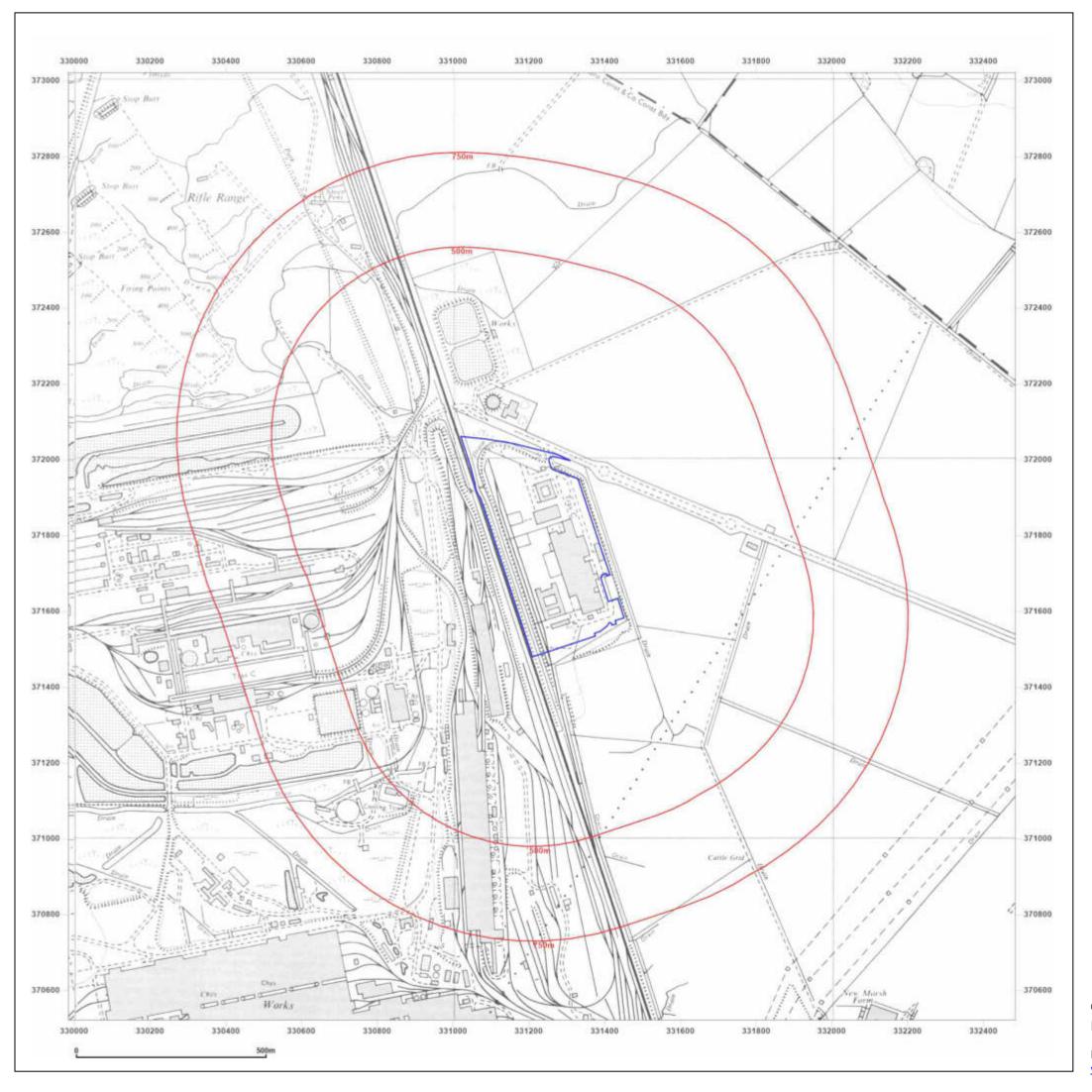
Scale: 1:10,560

Printed at: 1:10,560

Surveyed 1962 Revised 1968 Edition N/A Copyright 1969 Levelled N/A

Revised 1965
Revised 1970
Edition N/A
Copyright 1970
Levelled N/A

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: National Grid

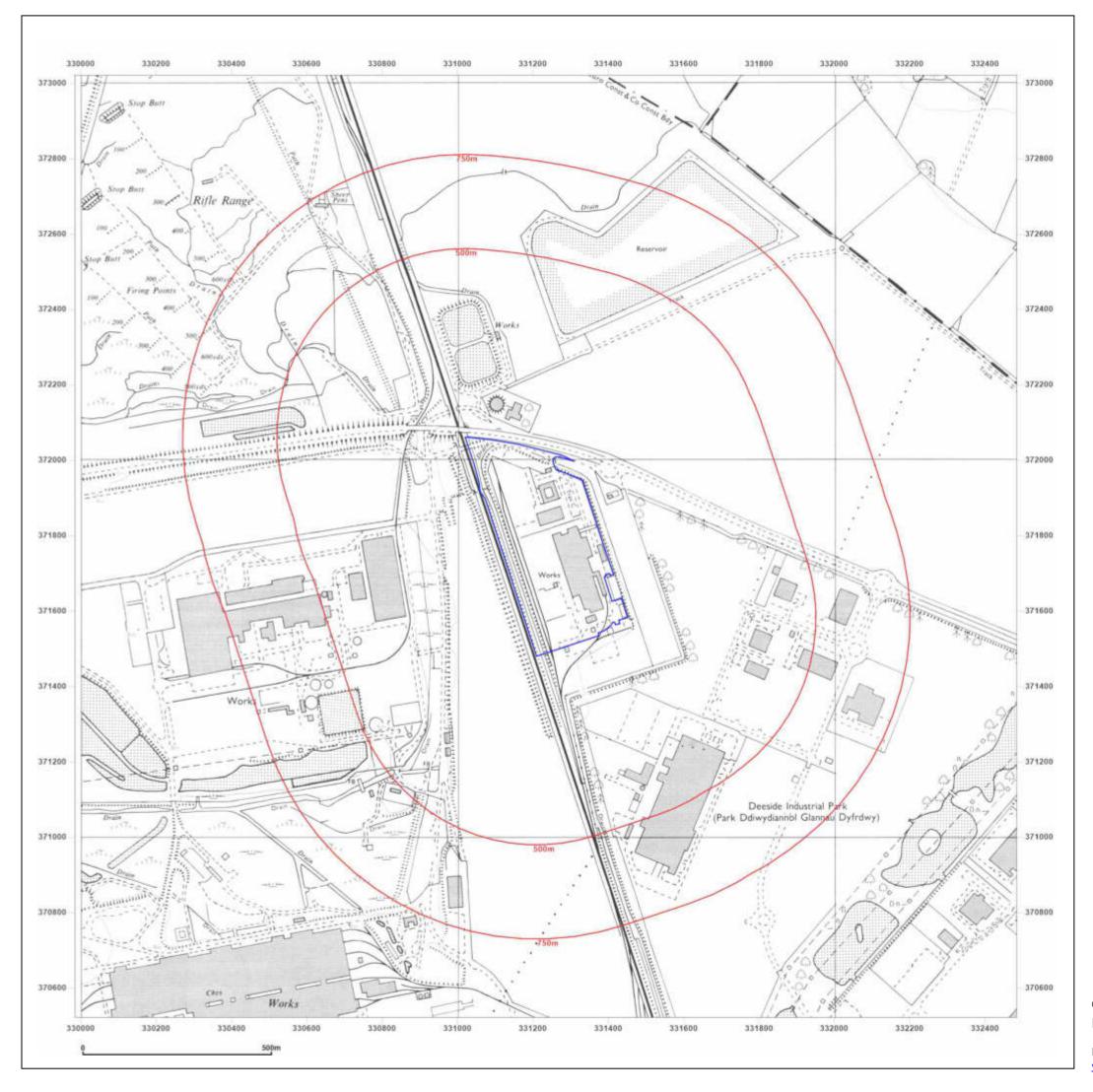
Map date: 1981

Scale: 1:10,000

Printed at: 1:10,000

Surveyed 1981
Revised 1981
Edition N/A
Copyright N/A
Levelled N/A

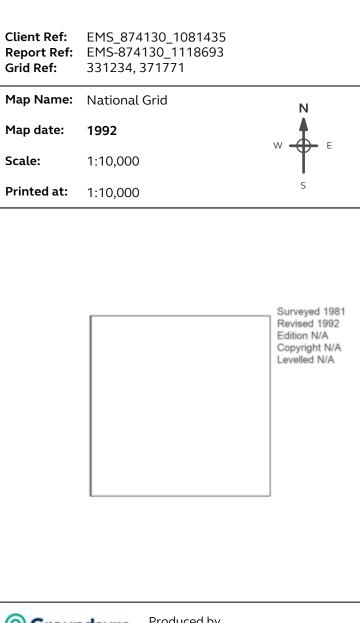
Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

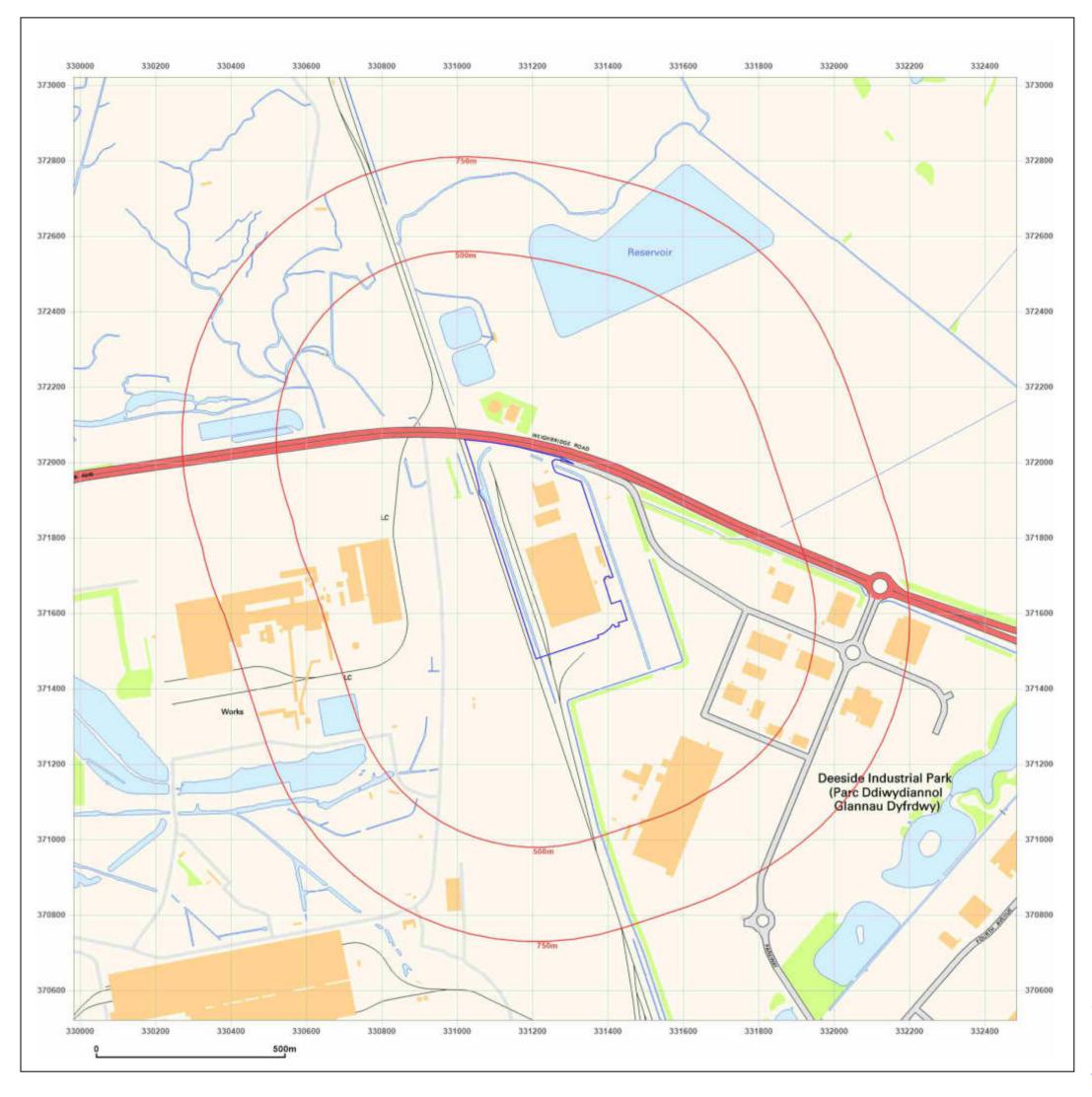
Production date: 15 June 2023


Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Report Ref: EMS-874130_1118693

Produced by Groundsure Insights www.groundsure.com



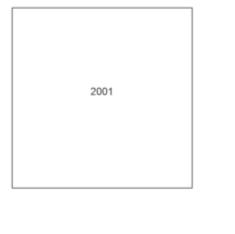
Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

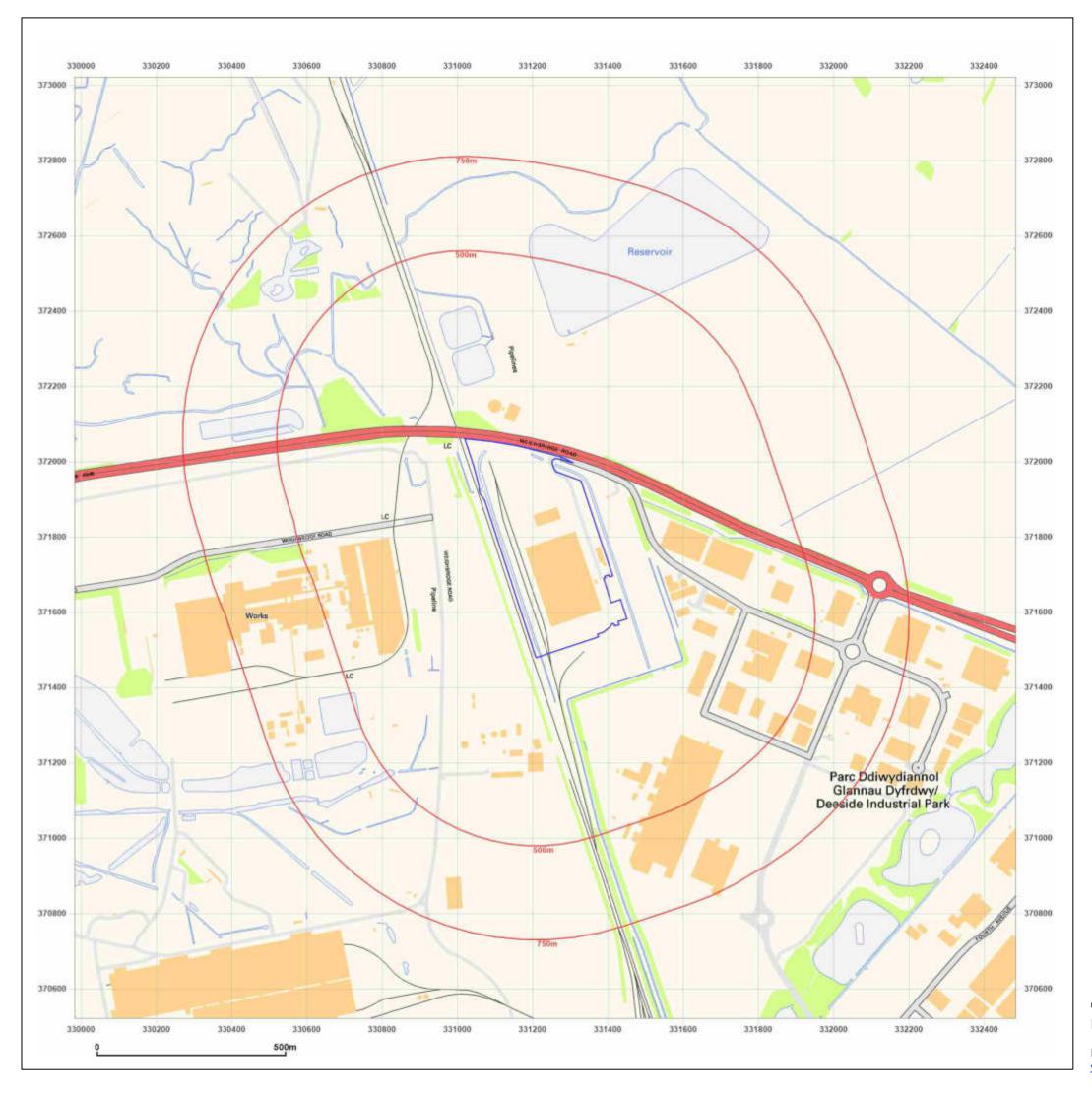
Map Name: National Grid

Map date: 2001

Scale: 1:10,000

Printed at: 1:10,000

Produced by Groundsure Insights www.groundsure.com



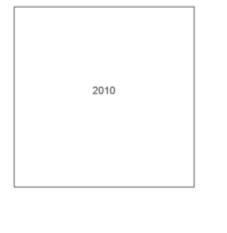
Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL


Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

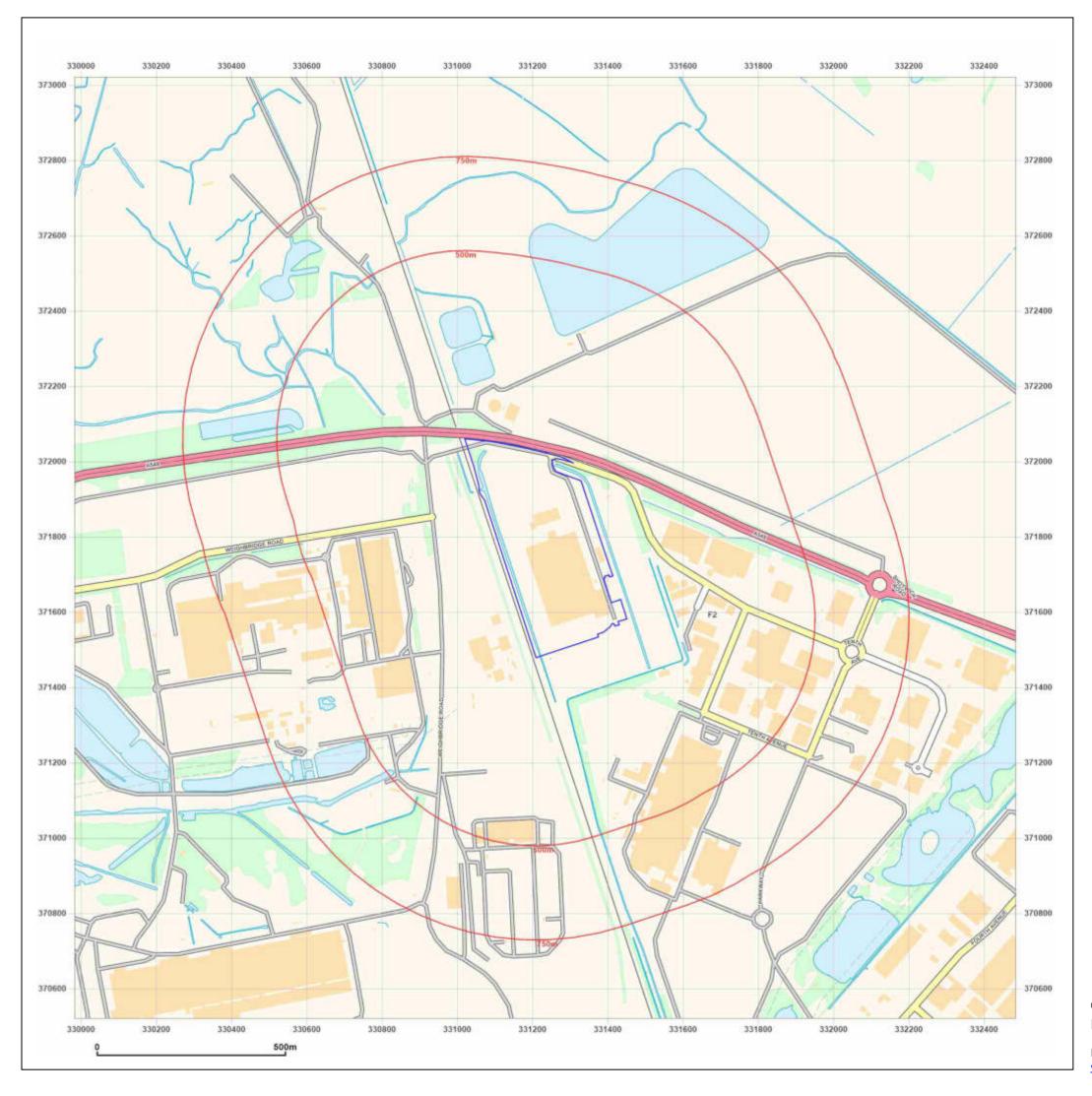
Map Name: National Grid

Map date: 2010

Scale: 1:10,000

Printed at: 1:10,000

Produced by Groundsure Insights www.groundsure.com



Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Client Ref: EMS_874130_1081435 Report Ref: EMS-874130_1118693 Grid Ref: 331234, 371771

Map Name: National Grid

Map date: 2023

Scale: 1:10,000

Printed at: 1:10,000

Produced by Groundsure Insights www.groundsure.com

Supplied by: www.emapsite.com sales@emapsite.com

© Crown copyright and database rights 2019 Ordnance Survey 100035207

Production date: 15 June 2023

Map legend available at:

Appendix C Environmental Data Reports

Enviro+Geo

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL

Order Details

Date: 15/06/2023

Your ref: EMS 874130 1081435

Our Ref: EMS-874130 1118694

Site Details

Location: 331237 371779

Area: 13.62 ha

Authority: Sir y Fflint - Flintshire County Council ↗

Summary of findings

p. 2 > Aerial image

p. 9 >

OS MasterMap site plan

N/A: >10ha

groundsure.com/insightuserguide ↗

Summary of findings

	,						
Page	Section	Past land use >	On site	0-50m	50-250m	250-500m	500-2000m
<u>14</u> >	<u>1.1</u> >	<u>Historical industrial land uses</u> >	13	1	7	36	-
<u>17</u> >	<u>1.2</u> >	<u>Historical tanks</u> >	3	0	2	19	-
<u>18</u> >	<u>1.3</u> >	<u>Historical energy features</u> >	4	2	3	17	-
19	1.4	Historical petrol stations	0	0	0	0	-
19	1.5	Historical garages	0	0	0	0	-
20	1.6	Historical military land	0	0	0	0	-
Page	Section	Past land use - un-grouped >	On site	0-50m	50-250m	250-500m	500-2000m
<u>21</u> >	<u>2.1</u> >	<u>Historical industrial land uses</u> >	12	1	10	51	-
<u>24</u> >	<u>2.2</u> >	<u>Historical tanks</u> >	5	0	3	27	-
<u>26</u> >	<u>2.3</u> >	<u>Historical energy features</u> >	5	6	4	29	-
20	2.4	Historical petrol stations	0	0	0	0	-
28							
28	2.5	Historical garages	0	0	0	0	-
		Historical garages Waste and landfill >	On site	0 0-50m	0 50-250m	0 250-500m	500-2000m
28	2.5						- 500-2000m
28 Page	2.5 Section	Waste and landfill >	On site	0-50m	50-250m	250-500m	- 500-2000m - -
28 Page 29	2.5 Section 3.1	Waste and landfill > Active or recent landfill	On site	0-50m	50-250m	250-500 m	- 500-2000m - -
28 Page 29	2.5 Section 3.1 3.2	Waste and landfill > Active or recent landfill Historical landfill (BGS records)	On site 0	0-50m 0	50-250m 0	250-500m 0 0	- 500-2000m - - -
28 Page 29 29 30	2.5 Section 3.1 3.2 3.3	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records)	On site 0 0	0-50m 0 0	50-250m 0 0	250-500m 0 0	- 500-2000m - - - -
28 Page 29 29 30 30	2.5 Section 3.1 3.2 3.3 3.4	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records)	On site 0 0 0 0	0-50m 0 0 0	50-250m 0 0 0	250-500m 0 0 0	- 500-2000m - - - - -
28 Page 29 29 30 30 30 >	2.5 Section 3.1 3.2 3.3 3.4 3.5 >	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites >	On site 0 0 0 1	0-50m 0 0 0 0	50-250m 0 0 0 0	250-500m 0 0 0 0 1	- 500-2000m - - - - - -
28 Page 29 29 30 30 30 > 31 >	2.5 Section 3.1 3.2 3.3 3.4 3.5 > 3.6 >	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites > Licensed waste sites >	On site 0 0 0 1	0-50m 0 0 0 0	50-250m 0 0 0 0 0 9	250-500m 0 0 0 0 1 2	- 500-2000m - - - - - - - - 500-2000m
28 Page 29 29 30 30 30 > 31 > 34 >	2.5 Section 3.1 3.2 3.3 3.4 3.5 > 3.6 > 3.7 >	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites > Licensed waste sites > Waste exemptions >	On site 0 0 0 1 0 21	0-50m 0 0 0 0 0 0	50-250m 0 0 0 0 9 0	250-500m 0 0 0 1 2 36	- - - -
28 Page 29 29 30 30 30 > 31 > 34 > Page	2.5 Section 3.1 3.2 3.3 3.4 3.5 > 3.6 > 3.7 > Section	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use >	On site 0 0 0 1 0 21 On site	0-50m 0 0 0 0 0 0 0 0 0 0 0 0	50-250m 0 0 0 0 9 0 50-250m	250-500m 0 0 0 1 2 36	-
28 Page 29 29 30 30 30 > 31 > 34 > Page 42 >	2.5 Section 3.1 3.2 3.3 3.4 3.5 > 3.6 > 3.7 > Section 4.1 >	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use > Recent industrial land uses >	On site 0 0 0 1 0 21 On site 6	0-50m 0 0 0 0 0 0 0 0 1	50-250m 0 0 0 0 0 9 0 50-250m	250-500m 0 0 0 1 2 36 250-500m	- - - -
28 Page 29 29 30 30 30 > 31 > 34 > Page 42 >	2.5 Section 3.1 3.2 3.3 3.4 3.5 > 3.6 > 3.7 > Section 4.1 > 4.2	Waste and landfill > Active or recent landfill Historical landfill (BGS records) Historical landfill (LA/mapping records) Historical landfill (EA/NRW records) Historical waste sites > Licensed waste sites > Waste exemptions > Current industrial land use > Recent industrial land uses > Current or recent petrol stations	On site 0 0 0 1 0 21 On site 6	0-50m 0 0 0 0 0 0 0 0 1 0	50-250m 0 0 0 0 9 0 50-250m	250-500m 0 0 0 1 2 36 250-500m	- - - -

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

<u>46</u> >	<u>4.6</u> >	Control of Major Accident Hazards (COMAH) >	1	0	0	0	-
46	4.7	Regulated explosive sites	0	0	0	0	-
<u>46</u> >	<u>4.8</u> >	<u>Hazardous substance storage/usage</u> >	1	0	0	0	-
47	4.9	Historical licensed industrial activities (IPC)	0	0	0	0	-
<u>47</u> >	<u>4.10</u> >	<u>Licensed industrial activities (Part A(1))</u> >	0	0	5	8	-
<u>49</u> >	<u>4.11</u> >	<u>Licensed pollutant release (Part A(2)/B)</u> >	1	0	0	1	-
50	4.12	Radioactive Substance Authorisations	0	0	0	0	-
<u>50</u> >	<u>4.13</u> >	<u>Licensed Discharges to controlled waters</u> >	1	1	0	3	-
51	4.14	Pollutant release to surface waters (Red List)	0	0	0	0	-
51	4.15	Pollutant release to public sewer	0	0	0	0	-
52	4.16	List 1 Dangerous Substances	0	0	0	0	-
52	4.17	List 2 Dangerous Substances	0	0	0	0	-
<u>52</u> >	<u>4.18</u> >	Pollution Incidents (EA/NRW) >	1	0	9	6	-
54	4.19	Pollution inventory substances	0	0	0	0	-
54	4.20	Pollution inventory waste transfers	0	0	0	0	-
54	4.21	Pollution inventory radioactive waste	0	0	0	0	_
	Costion	Hydrogeology >	On site	0-50m	50-250m	250 500	
Page	Section	11/41/03/03/03/	OH Site			250-500m	500-2000m
Page 55 >	<u>5.1</u> >	Superficial aquifer >		within 500m)	250-500m	500-2000m
			Identified (within 500m within 500m	,	250-500M	500-2000m
<u>55</u> >	<u>5.1</u> >	Superficial aquifer >	Identified (,	25U-5UUM	500-2000m
<u>55</u> > <u>56</u> >	<u>5.1</u> > <u>5.2</u> >	Superficial aquifer > Bedrock aquifer >	Identified (within 500m within 50m)	,	25U-5UUM	500-2000m
55 > 56 > 58 >	5.1 > 5.2 > 5.3 >	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability >	Identified (Identified (within 500m within 50m) in 0m)	,	25U-5UUM	500-2000m
55 > 56 > 58 >	5.1 > 5.2 > 5.3 > 5.4	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk	Identified (Identified (Identified (None (with	within 500m within 50m) in 0m)	,	250-500m	500-2000m
55 > 56 > 58 > 59	5.1 > 5.2 > 5.3 > 5.4 5.5	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk Groundwater vulnerability- local information	Identified (Identified (Identified (None (with	within 500m within 50m) in 0m) in 0m))		
55 > 56 > 58 > 59 60 61 >	5.1 > 5.2 > 5.3 > 5.4 5.5 5.6 >	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk Groundwater vulnerability- local information Groundwater abstractions >	Identified (Identified (Identified (None (with None (with	within 500m within 50m) in 0m) in 0m)	0	1	6
55 > 56 > 58 > 59 60 61 > 63 >	5.1 > 5.2 > 5.3 > 5.4 5.5 5.6 > 5.7 >	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk Groundwater vulnerability- local information Groundwater abstractions > Surface water abstractions >	Identified (Identified (Identified (None (with None (with 0	within 500m within 50m) in 0m) in 0m) 0	0	1 1	6
55 > 56 > 58 > 59 60 61 > 63 >	5.1 > 5.2 > 5.3 > 5.4 5.5 5.6 > 5.7 > 5.8	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk Groundwater vulnerability- local information Groundwater abstractions > Surface water abstractions > Potable abstractions	Identified (Identified (Identified (None (with None (with 0 0 0	within 500m within 50m) in 0m) 0 0	0 0	1 1 0	6
55 > 56 > 58 > 59 60 61 > 63 > 64 64	5.1 > 5.2 > 5.3 > 5.4 5.5 5.6 > 5.7 > 5.8 5.9	Superficial aquifer > Bedrock aquifer > Groundwater vulnerability > Groundwater vulnerability- soluble rock risk Groundwater vulnerability- local information Groundwater abstractions > Surface water abstractions > Potable abstractions Source Protection Zones	Identified (Identified (Identified (None (with None (with 0 0 0 0	within 500m within 50m) in 0m) 0 0 0	0 0 0	1 1 0	6

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

<u>67</u> >	<u>6.2</u> >	<u>Surface water features</u> >	1	2	8	-	-
<u>68</u> >	<u>6.3</u> >	WFD Surface water body catchments >	1	-	-	-	-
68	6.4	WFD Surface water bodies	0	0	0	-	-
<u>68</u> >	<u>6.5</u> >	WFD Groundwater bodies >	1	-	-	-	-
Page	Section	River and coastal flooding >	On site	0-50m	50-250m	250-500m	500-2000m
<u>69</u> >	<u>7.1</u> >	Risk of flooding from rivers and the sea >	Low (withir	n 50m)			
70	7.2	Historical Flood Events	0	0	0	-	-
70	7.3	Flood Defences	0	0	0	-	-
<u>70</u> >	<u>7.4</u> >	<u>Areas Benefiting from Flood Defences</u> >	2	3	0	-	-
71	7.5	Flood Storage Areas	0	0	0	-	-
<u>72</u> >	<u>7.6</u> >	Flood Zone 2 >	Identified (within 50m)			
<u>73</u> >	<u>7.7</u> >	Flood Zone 3 >	Identified (within 50m)			
Page	Section	Surface water flooding >					
<u>74</u> >	<u>8.1</u> >	Surface water flooding >	1 in 30 year	r, 0.3m - 1.0r	n (within 50	m)	
Page	Section	Groundwater flooding >					
<u>76</u> >	<u>9.1</u> >	Groundwater flooding >	High (withi	n 50m)			
		-	High (withi	n 50m) _{0-50m}	50-250m	250-500m	500-2000m
<u>76</u> >	<u>9.1</u> >	Groundwater flooding >			50-250m	250-500m	500-2000m
<u>76</u> >	<u>9.1</u> >	Groundwater flooding > Environmental designations >	On site	0-50m			
76 > Page 77 >	9.1 > Section 10.1 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) >	On site	0-50m	1	1	8
76 > Page 77 > 78 >	9.1 > Section 10.1 > 10.2 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) >	On site 0	0-50m 0	1	1 0	8
76 > Page 77 > 78 > 89 >	9.1 > Section 10.1 > 10.2 > 10.3 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) >	On site 0 0 0	0-50m 0 0	1 1 1	1 0 0	8 9 3
76 > Page 77 > 78 > 89 > 90 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) >	On site 0 0 0 0	0-50m 0 0 0	1 1 1 1	1 0 0	8 9 3 9
76 > Page 77 > 78 > 89 > 90 >	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 >	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR)	On site 0 0 0 0 0	0-50m 0 0 0	1 1 1 1 0	1 0 0 0	8 9 3 9
76 > Page 77 > 78 > 89 > 90 > 94	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 10.6	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) Local Nature Reserves (LNR)	On site 0 0 0 0 0 0 0	0-50m 0 0 0 0	1 1 1 1 0	1 0 0 0 0	8 9 3 9 0
76 > Page 77 > 78 > 89 > 90 > 94 94	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 10.6 10.7	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland	On site 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0	1 1 1 1 0 0	1 0 0 0 0	8 9 3 9 0 0
76 > Page 77 > 78 > 89 > 90 > 94 94 94 95	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 10.6 10.7 10.8	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland Biosphere Reserves	On site 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0	1 1 1 1 0 0	1 0 0 0 0 0	8 9 3 9 0 0
76 > Page 77 > 89 > 90 > 94 94 95 95	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 10.6 10.7 10.8 10.9	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland Biosphere Reserves Forest Parks	On site 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0	1 1 1 1 0 0 0	1 0 0 0 0 0 0	8 9 3 9 0 0 0
76 > Page 77 > 89 > 90 > 94 94 95 95	9.1 > Section 10.1 > 10.2 > 10.3 > 10.4 > 10.5 10.6 10.7 10.8 10.9 10.10	Groundwater flooding > Environmental designations > Sites of Special Scientific Interest (SSSI) > Conserved wetland sites (Ramsar sites) > Special Areas of Conservation (SAC) > Special Protection Areas (SPA) > National Nature Reserves (NNR) Local Nature Reserves (LNR) Designated Ancient Woodland Biosphere Reserves Forest Parks Marine Conservation Zones	On site 0 0 0 0 0 0 0 0 0 0 0 0 0	0-50m 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 0 0 0 0	1 0 0 0 0 0 0	8 9 3 9 0 0 0

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

96 10.13 Possible Special Areas of Conservation (pSAC) 0 0 0 0 0 96 10.14 Potential Special Protection Areas (pSPA) 0 0 0 0 0 10.15 Nitrate Sensitive Areas 96 0 0 0 0 0 10.16 > Nitrate Vulnerable Zones > 0 2 0 5 <u>97</u> > 1 98 > 10.17 > SSSI Impact Risk Zones > 2 2 100 > 10.18 > SSSI Units > 0 0 0 0 0-50m 50-250m 250-500m 500-2000m On site Page Section Visual and cultural designations 102 11.1 **World Heritage Sites** 0 0 0 102 11.2 Area of Outstanding Natural Beauty 0 0 0 102 11.3 **National Parks** 0 0 0 102 11.4 **Listed Buildings** 0 0 0 103 11.5 **Conservation Areas** 0 0 0 103 11.6 **Scheduled Ancient Monuments** 0 ()0 103 **Registered Parks and Gardens** 11.7 ()()50-250m 250-500m On site 0-50m 500-2000m Page Section Agricultural designations > 104 > 12.1 > Agricultural Land Classification > Grade 5 (within 250m) 105 12.2 Open Access Land 0 0 0 105 12.3 Tree Felling Licences 0 0 0 0 0 105 12.4 **Environmental Stewardship Schemes** \cap 105 12.5 0 Countryside Stewardship Schemes \cap On site 0-50m 50-250m 250-500m 500-2000m Section Habitat designations Page 106 13.1 Priority Habitat Inventory 0 0 0 106 13.2 **Habitat Networks** 0 0 0 106 13.3 0 0 0 Open Mosaic Habitat 106 13.4 **Limestone Pavement Orders** 0 \cap \cap On site 0-50m 50-250m 250-500m 500-2000m Page Section **Geology 1:10,000 scale** > 107 > <u>14.1</u> > 10k Availability > Identified (within 500m) 108 14.2 Artificial and made ground (10k) 0 ()0 0 109 14.3 Superficial geology (10k) 0 ()0 0

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

109 14.4 Landslip (10k) 0 0 0 0 110 14.5 Bedrock geology (10k) 0 0 0 0 110 14.6 Bedrock faults and other linear features (10k) 0 0 0 0 **Geology 1:50,000 scale** > On site 0-50m 50-250m 250-500m 500-2000m Page Section <u>15.1</u> > 50k Availability > Identified (within 500m) <u>111</u> > <u>112</u> > <u>15.2</u> > Artificial and made ground (50k) > 1 0 0 1 <u>113</u> > <u>15.3</u> > Artificial ground permeability (50k) > 1 0 <u>114</u> > <u>15.4</u> > Superficial geology (50k) > 0 () <u>115</u> > 15.5 > Superficial permeability (50k) > Identified (within 50m) 115 15.6 Landslip (50k) 0 0 0 115 15.7 Landslip permeability (50k) None (within 50m) <u>116</u> > <u>15.8</u> > Bedrock geology (50k) > 1 1 0 Identified (within 50m) <u>117</u> > <u>15.9</u> > Bedrock permeability (50k) > 117 15.10 Bedrock faults and other linear features (50k) 0 0 0 ()On site 0-50m 50-250m 250-500m 500-2000m Page Section **Boreholes** > 118 > 16.1 > **BGS Boreholes** > 31 11 44 Page Section Natural ground subsidence > Shrink swell clays > Very low (within 50m) 123 > 17.1 > 124 > 17.2 > Running sands > Moderate (within 50m) 126 > **17.3** > Compressible deposits > Moderate (within 50m) 128 > **17.4** > Collapsible deposits > Negligible (within 50m) <u>129</u> > <u>17.5</u> > Landslides > Moderate (within 50m) Negligible (within 50m) <u>131</u> > **17.6** > Ground dissolution of soluble rocks > On site 0-50m 50-250m 250-500m 500-2000m Page Section Mining and ground workings > 133 18.1 BritPits 0 0 0 0 <u>134</u> > <u>18.2</u> > Surface ground workings > 1 0 5 <u>134</u> > <u>18.3</u> > <u>Underground workings</u> > 0 0 0 2 134 18.4 Underground mining extents () 0 0 0

135

18.5

Historical Mineral Planning Areas

0

0

0

()

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

<u>135</u> > <u>18.6</u> > Non-coal mining > 0 0 1 0 3 136 18.7 JPB mining areas None (within 0m) 18.8 The Coal Authority non-coal mining 136 0 0 0 136 18.9 Researched mining 0 0 0 136 18.10 Mining record office plans 0 0 0 0 BGS mine plans 137 18.11 137 18.12 Coal mining None (within 0m) None (within 0m) 137 18.13 Brine areas 137 18.14 Gypsum areas None (within 0m) 137 18.15 Tin mining None (within 0m) 138 18.16 Clay mining None (within 0m) 250-500m Ground cavities and sinkholes On site 0-50m 50-250m 500-2000m Section Page 19.1 Natural cavities 0 0 0 0 139 19.2 0 0 139 Mining cavities 0 0 0 139 19.3 Reported recent incidents 0 0 0 0 139 19.4 Historical incidents 0 0 0 () 19.5 National karst database 140 0 0 0 0 Section Radon > Page Less than 1% (within 0m) 141 > 20.1 > Radon > On site 0-50m 50-250m 250-500m 500-2000m Page Section **Soil chemistry** > 143 > 21.1 > **BGS Estimated Background Soil Chemistry** > 4 4 143 21.2 **BGS Estimated Urban Soil Chemistry** 0 0 21.3 144 **BGS Measured Urban Soil Chemistry** 0 0

Page

145

145

146

<u>146</u> >

147

Section

22.1

22.2

22.3

22.5

<u>22.4</u> >

On site

0

0

0

11

0

0-50m

0

0

0

4

0

50-250m

0

0

0

9

0

250-500m

Railway infrastructure and projects >

Underground railways (London)

Railway tunnels

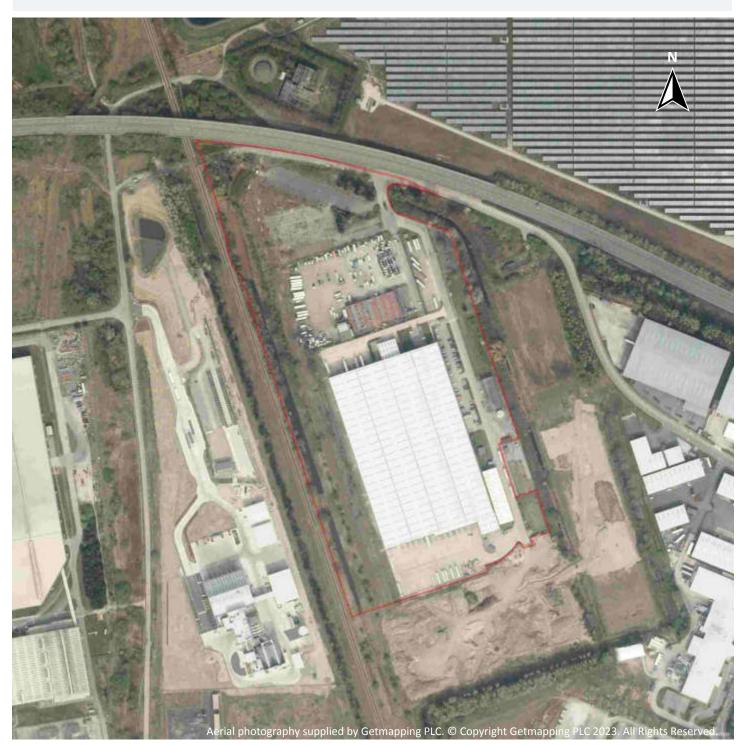
Royal Mail tunnels

Underground railways (Non-London)

<u>Historical railway and tunnel features</u> >

500-2000m

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779


<u>147</u> >	<u>22.6</u> >	Historical railways >	0	0	1	-	-
<u>148</u> >	<u>22.7</u> >	Railways >	0	8	9	-	-
148	22.8	Crossrail 1	0	0	0	0	-
149	22.9	Crossrail 2	0	0	0	0	-
149	22 10	HS2	0	0	0	0	_

Recent aerial photograph

Groundsure

Capture Date: 10/04/2020

Site Area: 13.62ha

Recent site history - 2017 aerial photograph

Capture Date: 07/05/2017

Site Area: 13.62ha

Recent site history - 2009 aerial photograph

Groundsure

Capture Date: 01/06/2009

Site Area: 13.62ha

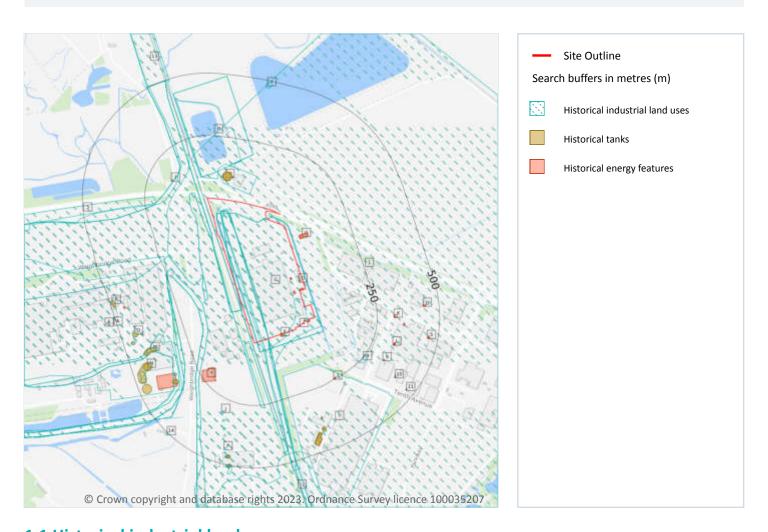
Recent site history - 2001 aerial photograph

Capture Date: 28/07/2001

Site Area: 13.62ha

Recent site history - 2000 aerial photograph

Groundsure


Capture Date: 04/09/2000

Site Area: 13.62ha

1 Past land use

1.1 Historical industrial land uses

Records within 500m 57

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 1:10,560 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14 >

ID	Location	Land use	Dates present	Group ID
1	On site	Airfield	1948	808717

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land use	Dates present	Group ID
2	On site	Railway Sidings	1992	858889
Α	On site	Railway Sidings	1981	791244
Α	On site	Railway Sidings	1969	844346
Α	On site	Railway Sidings	1969	867410
Α	On site	Unspecified Commercial/Industrial	1969	885292
Α	On site	Railway Sidings	1960	917387
Α	On site	Unspecified Commercial/Industrial	1960	948887
В	On site	Unspecified Commercial/Industrial	1981	791250
С	On site	Unspecified Disused Works	1960	813343
С	On site	Unspecified Works	1992	830083
С	On site	Unspecified Commercial/Industrial	1981	850635
С	On site	Unspecified Commercial/Industrial	1969	887068
F	40m N	Unspecified Works	1981	978120
Н	77m N	Unspecified Tank	1960 - 1969	864783
Н	77m N	Unspecified Tank	1981 - 1992	964375
F	79m NW	Unspecified Works	1992	883677
F	87m NW	Unspecified Works	1960 - 1969	901333
I	160m SE	Unspecified Commercial/Industrial	1992	796402
5	206m NW	Unspecified Pit	1992	839232
6	231m W	Unspecified Works	1992	830079
8	252m SE	Unspecified Heap	1913	803517
J	298m S	Chimneys	1960 - 1969	862317
J	298m S	Chimneys	1981	991371
J	330m S	Chimneys	1960 - 1969	965951
J	330m S	Chimneys	1981	976890
В	335m SW	Chimney	1981	921611
В	335m SW	Chimney	1960 - 1969	953701
В	341m SW	Unspecified Tank	1960 - 1969	878624

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land use	Dates present	Group ID
В .	341m SW	Unspecified Tank	1981	940657
J	360m S	Chimneys	1981	873012
J	360m S	Chimneys	1960 - 1969	907034
M	371m SW	Unspecified Tanks	1981	977832
J	385m S	Chimneys	1960 - 1969	897535
M	385m SW	Unspecified Tanks	1960 - 1969	943946
I	413m S	Unspecified Tank	1992	824019
Ν	415m SW	Unspecified Tanks	1981	814942
N	422m SW	Unspecified Tank	1960 - 1969	973944
0	430m SW	Unspecified Tank	1992	824059
Р	434m S	Chimneys	1960 - 1969	851351
Р	434m S	Chimneys	1981	863441
0	452m SW	Unspecified Tank	1992	824058
Ν	457m SW	Unspecified Tank	1960 - 1969	909070
Р	459m S	Chimneys	1960 - 1969	879595
Р	459m S	Chimneys	1981	964341
Ν	460m SW	Unspecified Tank	1960 - 1969	962312
12	465m S	Slag Works	1938 - 1948	870652
Р	465m S	Chimneys	1960 - 1969	921047
Т	470m N	Unspecified Heap	1969	901345
Т	470m N	Unspecified Heap	1981	955687
R	478m W	Unspecified Tank	1992	824060
13	492m NW	Railway Sidings	1960 - 1969	875989
Р	494m S	Chimneys	1981	964633
Р	498m S	Chimneys	1960	924552
Р	498m S	Chimneys	1969	966577
14	499m SW	Unspecified Tank	1981	824055
Р	499m S	Chimneys	1960 - 1969	918199

 ${\it This\ data\ is\ sourced\ from\ Ordnance\ Survey\ /\ Groundsure.}$

01273 257 755

1.2 Historical tanks

Records within 500m 24

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14 >

ID	Location	Land use	Dates present	Group ID
D	On site	Unspecified Tank	1997	111698
E	On site	Unspecified Tank	1991	136628
E	On site	Unspecified Tank	1984 - 1994	137923
Н	76m N	Unspecified Tank	1985 - 1990	133657
Н	78m N	Unspecified Tank	1963	128568
В	340m SW	Unspecified Tank	1963 - 1978	138702
I	365m S	Unspecified Tank	1992	148124
I	367m S	Unspecified Tank	1994 - 1997	138036
M	381m SW	Tanks	1963 - 1978	129162
I	405m S	Unspecified Tank	1992	131346
I	409m S	Unspecified Tank	1994 - 1997	138329
I	420m S	Tanks	1992	130061
Ν	420m SW	Unspecified Tank	1963	111708
I	423m S	Tanks	1994 - 1997	137030
Ν	429m SW	Tanks	1963 - 1978	148924
0	434m SW	Unspecified Tank	1991	111710
Ν	449m SW	Unspecified Tank	1991	111705
0	457m SW	Unspecified Tank	1984 - 1991	134347
Р	461m S	Unspecified Tank	1963	111702
Р	461m S	Unspecified Tank	-	104317
R	462m W	Unspecified Tank	1991	111711

ID	Location	Land use	Dates present	Group ID
Р	467m S	Unspecified Tank	-	104407
R	481m W	Tanks	1984 - 1991	125863
Р	495m S	Unspecified Tank	1962	111701

This data is sourced from Ordnance Survey / Groundsure.

1.3 Historical energy features

Records within 500m 26

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use map on page 14 >

ID	Location	Land use	Dates present	Group ID
D	On site	Electricity Substation	1997	60774
D	On site	Electricity Substation	1997	60775
D	On site	Electricity Substation	1991 - 1992	64127
D	On site	Electricity Substation	1994	64777
G	43m NE	Electricity Substation	1984 - 1992	81647
G	44m NE	Electricity Substation	1983 - 1997	79790
3	153m NW	Electricity Substation	1992 - 1997	64736
4	188m SW	Electricity Substation	1997	60773
7	243m SE	Electricity Substation	1991	60776
K	316m E	Electricity Substation	1984 - 1994	75578
9	323m SE	Electricity Substation	1994 - 1997	66081
L	333m SE	Electricity Substation	1991 - 1992	71971
L	334m SE	Electricity Substation	1997	76853
L	336m SE	Electricity Substation	1994	66194
В	340m SW	Electricity Substation	1984 - 1991	67757

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land use	Dates present	Group ID
K	354m E	Electricity Substation	1991 - 1992	68173
K	356m E	Electricity Substation	1997	60777
K	357m E	Electricity Substation	1994	70604
10	397m SE	Electricity Substation	1994 - 1997	76966
Q	436m E	Electricity Substation	1992 - 1997	68682
Q	438m E	Electricity Substation	1991	67637
R	447m W	Electricity Substation	1991	60772
S	459m SE	Electricity Substation	1991 - 1992	65161
S	460m E	Electricity Substation	1997	76965
S	461m SE	Electricity Substation	1994	69198
11	464m SE	Electricity Substation	1994 - 1997	75713

This data is sourced from Ordnance Survey / Groundsure.

1.4 Historical petrol stations

Records within 500m 0

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

1.5 Historical garages

Records within 500m 0

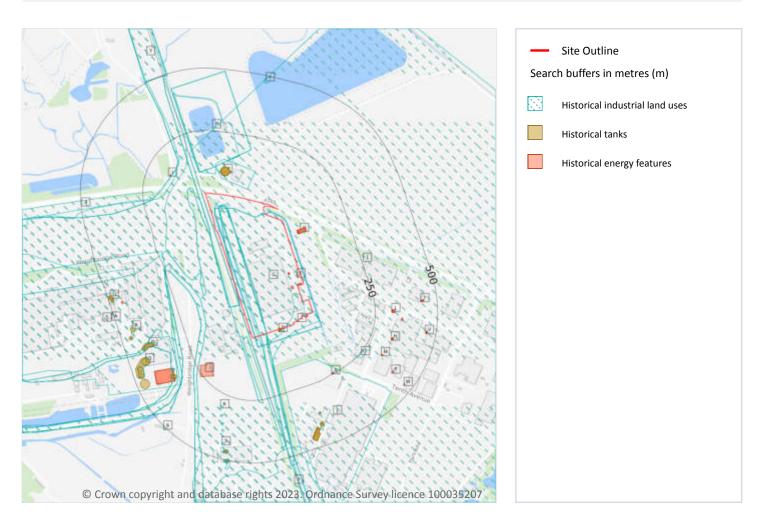
Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale, intelligently grouped into contiguous features. To prevent misrepresentation of the size of historical features at any given time, features are only grouped if they have similar geometries within immediately preceding or succeeding map editions. See section 2 for a breakdown of grouping if required. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

1.6 Historical military land

Records within 500m 0


Areas of military land digitised from multiple sources including the National Archives, local records, MOD records and verified other sources, intelligently grouped into contiguous features.

This data is sourced from Ordnance Survey / Groundsure / other sources.

2 Past land use - un-grouped

2.1 Historical industrial land uses

Records within 500m 74

Potentially contaminative land use features digitised from historical Ordnance Survey mapping at 1:10,000 and 10,560 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original ungrouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 21 >

ID	Location	Land Use	Date	Group ID
1	On site	Airfield	1948	808717
2	On site	Railway Sidings	1992	858889
Α	On site	Railway Sidings	1981	791244

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land Use	Date	Group ID
Α	On site	Railway Sidings	1960	917387
Α	On site	Unspecified Commercial/Industrial	1960	948887
Α	On site	Unspecified Commercial/Industrial	1969	885292
Α	On site	Railway Sidings	1969	844346
В	On site	Unspecified Commercial/Industrial	1981	791250
С	On site	Unspecified Commercial/Industrial	1981	850635
С	On site	Unspecified Disused Works	1960	813343
С	On site	Unspecified Commercial/Industrial	1969	887068
С	On site	Unspecified Works	1992	830083
F	40m N	Unspecified Works	1981	978120
Н	77m N	Unspecified Tank	1981	964375
Н	77m N	Unspecified Tank	1960	864783
Н	77m N	Unspecified Tank	1969	864783
Н	77m N	Unspecified Tank	1992	964375
F	79m NW	Unspecified Works	1992	883677
F	87m NW	Unspecified Works	1960	901333
F	87m NW	Unspecified Works	1969	901333
J	160m SE	Unspecified Commercial/Industrial	1992	796402
4	206m NW	Unspecified Pit	1992	839232
5	231m W	Unspecified Works	1992	830079
7	252m SE	Unspecified Heap	1913	803517
K	298m S	Chimneys	1981	991371
K	298m S	Chimneys	1960	862317
K	298m S	Chimneys	1969	862317
K	330m S	Chimneys	1981	976890
K	330m S	Chimneys	1960	965951
K	330m S	Chimneys	1969	965951
В	335m SW	Chimney	1981	921611

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land Use	Date	Group ID
В	335m SW	Chimney	1960	953701
В	335m SW	Chimney	1969	953701
В	341m SW	Unspecified Tank	1981	940657
В	341m SW	Unspecified Tank	1960	878624
В	341m SW	Unspecified Tank	1969	878624
K	360m S	Chimneys	1981	873012
K	360m S	Chimneys	1960	907034
K	360m S	Chimneys	1969	907034
Ο	371m SW	Unspecified Tanks	1981	977832
K	385m S	Chimneys	1960	897535
K	385m S	Chimneys	1969	897535
0	385m SW	Unspecified Tanks	1960	943946
Ο	385m SW	Unspecified Tanks	1969	943946
J	413m S	Unspecified Tank	1992	824019
Q	415m SW	Unspecified Tanks	1981	814942
Q	422m SW	Unspecified Tank	1960	973944
Q	422m SW	Unspecified Tank	1969	973944
R	430m SW	Unspecified Tank	1992	824059
S	434m S	Chimneys	1981	863441
S	434m S	Chimneys	1960	851351
S	434m S	Chimneys	1969	851351
R	452m SW	Unspecified Tank	1992	824058
Q	457m SW	Unspecified Tank	1960	909070
Q	457m SW	Unspecified Tank	1969	909070
S	459m S	Chimneys	1981	964341
S	459m S	Chimneys	1960	879595
S	459m S	Chimneys	1969	879595
Q	460m SW	Unspecified Tank	1960	962312

Ref: EMS-874130_1118694 **Your ref**: EMS_874130_1081435 **Grid ref**: 331237 371779

ID	Location	Land Use	Date	Group ID
Q	460m SW	Unspecified Tank	1969	962312
8	465m S	Slag Works	1948	870652
S	465m S	Chimneys	1960	921047
S	465m S	Chimneys	1969	921047
Χ	470m N	Unspecified Heap	1981	955687
Χ	470m N	Unspecified Heap	1969	901345
U	478m W	Unspecified Tank	1992	824060
Υ	492m NW	Railway Sidings	1969	875989
S	494m S	Chimneys	1981	964633
Υ	498m NW	Railway Sidings	1960	875989
S	498m S	Chimneys	1960	924552
S	498m S	Chimneys	1969	966577
9	499m SW	Unspecified Tank	1981	824055
S	499m S	Chimneys	1960	918199
S	499m S	Chimneys	1969	918199

This data is sourced from Ordnance Survey / Groundsure.

2.2 Historical tanks

Records within 500m 35

Tank features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 21 >

ID	Location	Land Use	Date	Group ID
D	On site	Unspecified Tank	1994	137923
D	On site	Unspecified Tank	1991	136628
D	On site	Unspecified Tank	1984	137923
D	On site	Unspecified Tank	1992	137923
E	On site	Unspecified Tank	1997	111698

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land Use	Date	Group ID
Н	76m N	Unspecified Tank	1990	133657
Н	76m N	Unspecified Tank	1985	133657
Н	78m N	Unspecified Tank	1963	128568
В	340m SW	Unspecified Tank	1963	138702
В	349m SW	Unspecified Tank	1978	138702
J	365m S	Unspecified Tank	1992	148124
J	367m S	Unspecified Tank	1994	138036
J	367m S	Unspecified Tank	1997	138036
0	381m SW	Tanks	1978	129162
0	387m SW	Tanks	1963	129162
J	405m S	Unspecified Tank	1992	131346
J	409m S	Unspecified Tank	1994	138329
J	409m S	Unspecified Tank	1997	138329
J	420m S	Tanks	1992	130061
Q	420m SW	Unspecified Tank	1963	111708
J	423m S	Tanks	1994	137030
J	423m S	Tanks	1997	137030
Q	429m SW	Tanks	1978	148924
R	434m SW	Unspecified Tank	1991	111710
Q	449m SW	Unspecified Tank	1991	111705
Q	455m SW	Tanks	1963	148924
R	457m SW	Unspecified Tank	1991	134347
R	459m SW	Unspecified Tank	1984	134347
S	461m S	Unspecified Tank	1963	111702
S	461m S	Unspecified Tank	-	104317
U	462m W	Unspecified Tank	1991	111711
S	467m S	Unspecified Tank	-	104407
U	481m W	Tanks	1991	125863

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land Use	Date	Group ID
U	483m W	Tanks	1984	125863
S	495m S	Unspecified Tank	1962	111701

This data is sourced from Ordnance Survey / Groundsure.

2.3 Historical energy features

Records within 500m 44

Energy features digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

Features are displayed on the Past land use - un-grouped map on page 21 >

ID	Location	Land Use	Date	Group ID
E	On site	Electricity Substation	1994	64777
E	On site	Electricity Substation	1991	64127
E	On site	Electricity Substation	1992	64127
E	On site	Electricity Substation	1997	60775
E	On site	Electricity Substation	1997	60774
G	43m NE	Electricity Substation	1984	81647
G	43m NE	Electricity Substation	1992	81647
G	44m NE	Electricity Substation	1994	79790
G	44m NE	Electricity Substation	1997	79790
G	46m NE	Electricity Substation	1983	79790
G	46m NE	Electricity Substation	1991	79790
I	153m NW	Electricity Substation	1997	64736
I	153m NW	Electricity Substation	1992	64736
3	188m SW	Electricity Substation	1997	60773
6	243m SE	Electricity Substation	1991	60776
L	316m E	Electricity Substation	1984	75578
L	316m E	Electricity Substation	1992	75578
L	318m E	Electricity Substation	1994	75578

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Land Use	Date	Group ID
	318m E	Electricity Substation	1991	75578
M	323m SE	Electricity Substation	1994	66081
M	323m SE	Electricity Substation	1997	66081
Ν	333m SE	Electricity Substation	1992	71971
Ν	334m SE	Electricity Substation	1997	76853
Ν	335m SE	Electricity Substation	1991	71971
Ν	336m SE	Electricity Substation	1994	66194
В	340m SW	Electricity Substation	1991	67757
В	342m SW	Electricity Substation	1984	67757
L	354m E	Electricity Substation	1992	68173
L	356m E	Electricity Substation	1997	60777
L	357m E	Electricity Substation	1994	70604
L	357m E	Electricity Substation	1991	68173
Р	397m SE	Electricity Substation	1994	76966
Р	397m SE	Electricity Substation	1997	76966
Т	436m E	Electricity Substation	1992	68682
Т	438m E	Electricity Substation	1991	67637
Т	438m E	Electricity Substation	1994	68682
Т	438m E	Electricity Substation	1997	68682
U	447m W	Electricity Substation	1991	60772
V	459m SE	Electricity Substation	1992	65161
V	460m E	Electricity Substation	1997	76965
V	461m SE	Electricity Substation	1994	69198
V	461m SE	Electricity Substation	1991	65161
W	464m SE	Electricity Substation	1994	75713
W	464m SE	Electricity Substation	1997	75713

This data is sourced from Ordnance Survey / Groundsure.

01273 257 755

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

0

2.4 Historical petrol stations

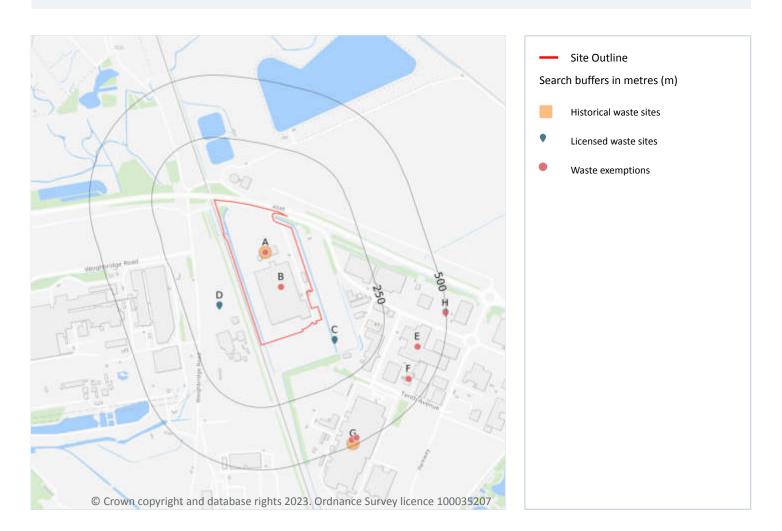
Records within 500m

Petrol stations digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

2.5 Historical garages

Records within 500m 0


Garages digitised from historical Ordnance Survey mapping at high-detail 1:1,250 and 1:2,500 scale. Any records shown are available intelligently grouped in section 1. Grouped and the original un-grouped features can be cross-referenced across sections 1 and 2 using the 'Group ID'.

This data is sourced from Ordnance Survey / Groundsure.

3 Waste and landfill

3.1 Active or recent landfill

Records within 500m 0

Active or recently closed landfill sites under Environment Agency/Natural Resources Wales regulation.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.2 Historical landfill (BGS records)

Records within 500m 0

Landfill sites identified on a survey carried out on behalf of the DoE in 1973. These sites may have been closed or operational at this time.

This data is sourced from the British Geological Survey.

3.3 Historical landfill (LA/mapping records)

Records within 500m 0

Landfill sites identified from Local Authority records and high detail historical mapping.

This data is sourced from the Ordnance Survey/Groundsure and Local Authority records.

3.4 Historical landfill (EA/NRW records)

Records within 500m 0

Known historical (closed) landfill sites (e.g. sites where there is no PPC permit or waste management licence currently in force). This includes sites that existed before the waste licensing regime and sites that have been licensed in the past but where a licence has been revoked, ceased to exist or surrendered and a certificate of completion has been issued.

This data is sourced from the Environment Agency and Natural Resources Wales.

3.5 Historical waste sites

Records within 500m 2

Waste site records derived from Local Authority planning records and high detail historical mapping. Features are displayed on the Waste and landfill map on page 29 >

ID	Location	Address	Further Details	Date
A	On site	Site Address: Weighbridge Road, Deeside Industrial ParkDeesideClwydCH5 2LL	Type of Site: Municipal Solid Waste Recycling/Recovery Plant Planning application reference: 58270 Description: Scheme comprises the planning application seeks detailed planning consent for a municipal solid waste (msw) and commercial and industrial waste (c and i) recycling and recovery plant on land at deeside industrial estate, flintshire enterprise zone. Data source: Historic Planning Application Data Type: Point	

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Address	Further Details	Date
G	467m SE	Site Address: Toyota Motor Manufacturing, UK, 3 Tenth Avenue, Deeside, Industrial Park, DEESIDE, Clwyd, CH5 2TW	Type of Site: Recycling Facility Planning application reference: 48307 Description: Scheme comprises importation, storage and processing of waste metal for manufacturing/casting of engines as part of engine manufacturing operations. An application (ref: 048307) for detailed planning permission was submitted to Flintshire C.C. A detailed planning application has been submitted. Data source: Historic Planning Application Data Type: Point	15/12/201

This data is sourced from Ordnance Survey/Groundsure and Local Authority records.

3.6 Licensed waste sites

Records within 500m 11

Active or recently closed waste sites under Environment Agency/Natural Resources Wales regulation. Features are displayed on the Waste and landfill map on page-29 >

ID	Location	Details		
С	96m SE	Site Name: Alan's Skip Hire Ltd Site Address: Former Deeside Titanium Works, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: Deposit of waste to land as a recovery operation Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: ALA049 EPR reference: KB3433RY/A001 Operator: Alan's Skip Hire Ltd Waste Management licence No: 104616 Annual Tonnage: 0	Issue Date: 06/12/2012 Effective Date: - Modified: - Surrendered Date: 0 Expiry Date: 0 Cancelled Date: 0 Status: Issued
С	96m SE	Site Name: - Site Address: Alan's Skip Hire Ltd, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: Deposit of waste to land as a recovery operation Size: - Environmental Permitting Regulations (Waste) Licence Number: KB3433RY EPR reference: - Operator: Alan's Skip Hire Ltd Waste Management licence No: - Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: 06/12/2012 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details		
С	96m SE	Site Name: - Site Address: Alan's Skip Hire Ltd, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: Deposit of waste to land as a recovery operation Size: - Environmental Permitting Regulations (Waste) Licence Number: KB3433RY EPR reference: - Operator: Alan's Skip Hire Ltd Waste Management licence No: - Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: 06/12/2012 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	96m SE	Site Name: - Site Address: Alan's Skip Hire Ltd, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: KB3433RY EPR reference: - Operator: Alan's Skip Hire Ltd Waste Management licence No: 0 Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: 06/12/2012 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
С	96m SE	Site Name: Alan's Skip Hire Ltd Site Address: Former Deeside Titanium Works, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: Deposit of waste to land as a recovery operation Size: 25000 tonnes Environmental Permitting Regulations (Waste) Licence Number: ALA049 EPR reference: EA/EPR/KB3433RY/A001 Operator: Alan's Skip Hire Ltd Waste Management licence No: 104616 Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Issued
С	96m SE	Site Name: - Site Address: Alan's Skip Hire Ltd, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: Deposit of waste to land as a recovery operation Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: KB3433RY EPR reference: - Operator: - Waste Management licence No: 104616 Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: 06/12/2012 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details		
С	96m SE	Site Name: - Site Address: Alan's Skip Hire Ltd, Weighbridge Road, Flintshire, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: KB3433RY EPR reference: - Operator: Alan's Skip Hire Ltd Waste Management licence No: 104616 Annual Tonnage: 116500	Issue Date: 06/12/2012 Effective Date: 06/12/2012 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
D	111m SW	Site Name: Parc Adfer Enery Recovery Facility Site Address: WTI UK Ltd, Parc Adfer Enery Recovery Facility, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: AB3092CV EPR reference: - Operator: WTI UK Ltd Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 28/10/2015 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
D	111m SW	Site Name: Parc Adfer Enery Recovery Facility Site Address: WTI UK Ltd, Parc Adfer Enery Recovery Facility, Weighbridge Road, Deeside, Flintshire, CH5 2LL Correspondence Address: -	Type of Site: - Size: Unknown Environmental Permitting Regulations (Waste) Licence Number: AB3092CV EPR reference: - Operator: WTI UK Ltd Waste Management licence No: 0 Annual Tonnage: 0	Issue Date: 28/10/2015 Effective Date: - Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
Н	494m E	Site Name: - Site Address: AkzoNobel Packaging Coatings Ltd, Tenth Avenue, Deeside Industrial Park, Deeside, CH5 2UA Correspondence Address: -	Type of Site: - Size: - Environmental Permitting Regulations (Waste) Licence Number: PAN-014838 EPR reference: - Operator: Vertase F.Ll. Ltd Waste Management licence No: - Annual Tonnage: 9000	Issue Date: 03/09/2021 Effective Date: 03/09/2021 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective
Н	494m E	Site Name: - Site Address: AkzoNobel Packaging Coatings Ltd, Tenth Avenue, Deeside Industrial Park, Deeside, CH5 2UA Correspondence Address: -	Type of Site: - Size: - Environmental Permitting Regulations (Waste) Licence Number: PAN-009904 EPR reference: - Operator: VertaseFLI Ltd Waste Management licence No: - Annual Tonnage: 9000	Issue Date: 06/05/2020 Effective Date: 06/05/2020 Modified: - Surrendered Date: - Expiry Date: - Cancelled Date: - Status: Effective

This data is sourced from the Environment Agency and Natural Resources Wales.

3.7 Waste exemptions

Records within 500m 57

Activities involving the storage, treatment, use or disposal of waste that are exempt from needing a permit. Exemptions have specific limits and conditions that must be adhered to.

Features are displayed on the Waste and landfill map on page 29 >

ID	Location	Site	Reference	Category	Sub-Category	Description
Α	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
Α	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Treating waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
Α	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Burning waste in the open
A	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Disposing of waste exemption	On a farm	Deposit of agricultural waste consisting of plant tissue under a Plant Health notice
A	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in secure containers
A	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Deposit of waste from dredging of inland waters

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Reference	Category	Sub-Category	Description
Α	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste for a specified purpose
Α	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Zone 4 Deeside Industrial Estate, Deeside, Flintshire, CH5 2LL	NRW- WME054859	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Spreading waste on agricultural land to confer benefit
В	On site	Land Lying South of Weighbridge Road, Zone 4 Deeside Industrial Park, Deeside, CH5 2LL	WEX087283	Treating waste exemption	Not on a farm	Screening and blending of waste
В	On site	Land Lying South of Weighbridge Road, Zone 4 Deeside Industrial Park, Deeside, CH5 2LL	WEX087283	Using waste exemption	Not on a farm	Use of waste in construction
В	On site	Alan's Skip Hire Ltd, Alan's Skip Hire, Former Deeside Titanium Works, Weighbridge Road, Deeside, Flintshire, CH52LL	NRW- WME017790	Treating waste exemption	Not on a farm	Screening and blending of waste
В	On site	Landmarc Support Services Limited, Deeside, Neston, CH52LL	NRW- WME019560	Disposing of waste exemption	Not on a farm	Deposit of waste from dredging of inland waters
В	On site	Clugston Construction Ltd, Land Lying South of Weighbridge Road, Zone 4 Deeside Industrial Park, Deeside, CH52LL	NRW- WME021972	Treating waste exemption	Not on a farm	Screening and blending of waste
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Use of waste in construction
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Deposit of waste from dredging of inland waters

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Reference	Category	Sub-Category	Description
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Using waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Spreading waste on agricultural land to confer benefit
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Disposing of waste exemption	On a farm	Deposit of agricultural waste consisting of plant tissue under a Plant Health notice
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Storing waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Storage of waste in secure containers
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Treating waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Treatment of waste wood and waste plant matter by chipping, shredding, cutting or pulverising
В	On site	Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL	NRW- WME025913	Disposing of waste exemption	Waste Exemption - Agricultural and Non- Agricultural	Burning waste in the open
В	On site On site	Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire,		waste	Exemption - Agricultural and Non-	Burning waste in the open Use of waste for a specified purpose
		Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire,	WME025913	waste exemption Using waste	Exemption - Agricultural and Non- Agricultural Waste Exemption - Agricultural and Non-	Use of waste for a specified
В	On site	Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL Landmarc Support Solutions Ltd, Sealand Rifle Range, Waybridge Road, Deeside, Flintshire, CH52LL Freedom Group, Freedom Group, Delta House, Tenth Avenue, Deeside Industrial	NRW- WME025913	waste exemption Using waste exemption Storing waste	Exemption - Agricultural and Non- Agricultural Waste Exemption - Agricultural and Non- Agricultural	Use of waste for a specified purpose Storage of waste in secure

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

		au.	D (
ID	Location	Site	Reference	Category	Sub-Category	Description
E	397m SE	TI Automotive, T I Automotive, Tenth Avenue, Deeside, Flintshire, CH52UA	NRW- WME026202	Storing waste exemption	Not on a farm	Storage of waste in secure containers
F	420m SE	UNIT 108, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2UA	WEX076192	Storing waste exemption	Not on a farm	Storage of waste in a secure place
F	420m SE	UNIT 108, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2UA	WEX076192	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Disposing of waste exemption	Not on a farm	Depositing samples of waste for the purposes of testing or analysing them
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Using waste exemption	Not on a farm	Spreading waste on non- agricultural land to confer benefit
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Using waste exemption	Not on a farm	Spreading of plant matter to confer benefit
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Storing waste exemption	Not on a farm	Storage of waste in secure containers

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Reference	Category	Sub-Category	Description
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Using waste exemption	Not on a farm	Use of mulch
G	476m SE	6m SE Toyota Motor NRW Manufacturing UK Ltd, WMI Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW		Using waste exemption	Not on a farm	Use of waste in construction
G	476m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	NRW- WME045500	Storing waste exemption	Not on a farm	Storage of waste in a secure place
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Disposing of waste exemption	Not on a farm	Depositing samples of waste for the purposes of testing or analysing them
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Storing waste exemption	Not on a farm	Storage of waste in secure containers
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Storing waste exemption	Not on a farm	Storage of waste in a secure place
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Using waste exemption	Not on a farm	Use of waste in construction
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Using waste exemption	Not on a farm	Spreading waste on agricultural land to confer benefit
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Using waste exemption	Not on a farm	Spreading waste on non- agricultural land to confer benefit

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

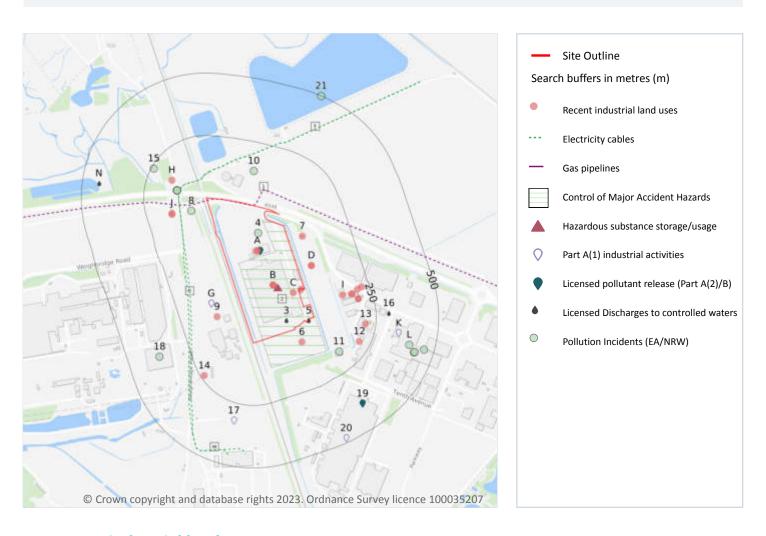
ID	Location	Site	Reference	Category	Sub-Category	Description
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Using waste exemption	Not on a farm	Use of mulch
G	477m SE	ZONE 3, TENTH AVENUE, DEESIDE INDUSTRIAL PARK, DEESIDE, CH5 2TW	WEX067759	Using waste exemption	Not on a farm	Spreading of plant matter to confer benefit
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, CH5 2TW	NRW- WME040898	Treating waste exemption	Not on a farm	Treatment of waste aerosol cans
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, CH5 2TW	NRW- WME040898	Storing waste exemption	Not on a farm	Storage of waste in a secure place
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, CH5 2TW	NRW- WME040898	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME008688	Storing waste exemption	Not on a farm	Storage of waste in a secure place
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME008688	Treating waste exemption	Not on a farm	Preparatory treatments (baling, sorting, shredding etc)
G	477m SE	Green Metals UK Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME008688	Treating waste exemption	Not on a farm	Treatment of waste aerosol cans
G	G 477m SE Toyota Motor NRW- Using was		Using waste exemption	Not on a farm	Use of mulch	
G	477m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME017466	Storing waste exemption	Not on a farm	Storage of waste in a secure place

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Reference	Category	Sub-Category	Description
G	477m SE Toyota Motor NRW- Using waste Not or Manufacturing UK Ltd, WME017466 exemption Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW		Not on a farm	Use of waste in construction		
G	477m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME017466	Storing waste exemption	Not on a farm	Storage of waste in secure containers
G	477m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME017466	Using waste exemption	Not on a farm	Spreading waste on non- agricultural land to confer benefit
G	477m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME017466	Using waste exemption	Not on a farm	Spreading waste on agricultural land to confer benefit
G 477m SE Toyota Motor NRW- Using waste Not on a farm Manufacturing UK Ltd, WME017466 exemption Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW		Spreading of plant matter to confer benefit				
G	477m SE	Toyota Motor Manufacturing UK Ltd, Toyota Motor Manufacturing (UK) Ltd, Zone 3, Tenth Avenue, Deeside Industrial Park, Glannau Dyfrdwy, CH52TW	NRW- WME017466	Disposing of waste exemption	Not on a farm	Depositing samples of waste for the purposes of testing or analysing them

01273 257 755

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779


ID	Location	Site	Reference	Category	Sub-Category	Description
Н	494m E	Vertase F.LI. Ltd, Akzonobel Packaging and Coatings Ltd., Tenth Avenue, Deeside Industrial Park, CH5 2UA, Deeside, Deeside, CH5 2UA	NRW- WME052219	Using waste exemption	Not on a farm	Use of waste in construction

This data is sourced from the Environment Agency and Natural Resources Wales.

4 Current industrial land use

4.1 Recent industrial land uses

Records within 250m 25

Current potentially contaminative industrial sites.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Company	Address	Activity	Category
Α	On site	Commercial Colours	Zone 3 Link 56, Weighbridge Road, Deeside Industrial Park, Deeside, Clwyd, CH5 2LL	Industrial Coatings and Finishings	Industrial Products
A	On site	Mavic Commercial Vehicle Solutions Ltd	-, Weighbridge Road, Sealand, Clwyd, CH5 2LL	New Vehicles	Motoring

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Company	Address	Activity	Category
В	On site	K K Fine Foods	Deeside Industrial Park, Weighbridge Road, Sealand, Clwyd, CH5 2UA	Catering and Non Specific Food Products	Foodstuffs
В	On site	Office Envy	Deeside Industrial Park, Weighbridge Road, Sealand, Clwyd, CH5 2UA	Office and Shop Equipment	Industrial Products
В	On site	Deeside Engineering Ltd	Deeside Industrial Park, Weighbridge Road, Sealand, Clwyd, CH5 2UA	Industrial Engineers	Engineering Services
С	On site	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
С	3m SE	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
D	56m E	T I Group Automotive Systems Deeside Ltd	Deeside Industrial Park, Weighbridge Road, Sealand, Clwyd, CH5 2LL	Vehicle Components	Industrial Products
D	56m E	News Quest	Deeside Industrial Park, Weighbridge Road, Sealand, Clwyd, CH5 2LL	Published Goods	Industrial Products
6	57m SE	Workings	Clwyd, CH5	Unspecified Quarries Or Mines	Extractive Industries
7	59m NE	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
9	106m SW	Parc Adfer EfW - EfW Incineration (BEIS)	Shotton Works, Deeside Industrial Park, Deeside, -, Clwyd, CH5 2NH	Energy Production	Industrial Features
I	138m E	Collister Glover	1a, Tenth Avenue, Sealand, Clwyd, CH5 2UA	General Construction Supplies	Industrial Products
J	150m NW	Sewage Pumping Station	Clwyd, CH5	Waste Storage, Processing and Disposal	Infrastructure and Facilities
J	151m NW	Pumping Station	Clwyd, CH5	Water Pumping Stations	Industrial Features
Н	155m NW	Electricity Sub Station	Clwyd, CH64	Electrical Features	Infrastructure and Facilities
I	173m E	The Arena Group	The Smart Centre 2b, Tenth Avenue, Sealand, Clwyd, CH5 2UA	Office and Shop Equipment	Industrial Products
I	175m E	Hood Seating Ltd	The Smart Centre 2b, Tenth Avenue, Sealand, Clwyd, CH5 2UA	Office and Shop Equipment	Industrial Products

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Company	Address	Activity	Category
I	192m E	D A C S Ltd	Unit C5, Tenth Avenue, Sealand, Clwyd, CH5 2UA	Industrial Engineers	Engineering Services
I	192m E	Stephan UK	Unit C5, Tenth Avenue, Sealand, Clwyd, CH5 2UA	Food and Beverage Industry Machinery	Industrial Products
I	201m E	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
12	206m SE	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
13	209m SE	Techtron	Unit F1-F2, Tenth Avenue, Sealand, Clwyd, CH5 2UA	Packaging	Industrial Products
I	220m E	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities
14	236m SW	Electricity Sub Station	Clwyd, CH5	Electrical Features	Infrastructure and Facilities

This data is sourced from Ordnance Survey.

4.2 Current or recent petrol stations

Records within 500m 0

Open, closed, under development and obsolete petrol stations.

This data is sourced from Experian.

4.3 Electricity cables

Records within 500m 6

High voltage underground electricity transmission cables.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Cable Set	Cable Route	Details	
Е	76m NW	-	600KV DC LAND CABLE 2 SECT 30	Cable Make: - Cable Type: - Operating Voltage (kV): 400	Year of installation: Not specified Cable in tunnel? Not specified
Е	77m NW	-	600KV DC LAND CABLE 1 SECT 30	Cable Make: - Cable Type: - Operating Voltage (kV): 400	Year of installation: Not specified Cable in tunnel? Not specified

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Cable Set	Cable Route	Details	
F	103m NW	-	600KV DC LAND CABLE 2 SECT 29	Cable Make: - Cable Type: - Operating Voltage (kV): 400	Year of installation: Not specified Cable in tunnel? Not specified
F	104m NW	-	600KV DC LAND CABLE 1 SECT 29	Cable Make: - Cable Type: - Operating Voltage (kV): 400	Year of installation: Not specified Cable in tunnel? Not specified
M	426m S	-	600KV DC SUBMARINE CABLE 2 SECT 31	Cable Make: - Cable Type: - Operating Voltage (kV): 400	Year of installation: Not specified Cable in tunnel? Not specified
M	437m S	600KV DC SUBMARINE CABLE 1 SECT 31	FLINTSHIRE BRIDGE - HUNTERSTON 1 HVDC	Cable Make: - Cable Type: - Operating Voltage (kV): 0	Year of installation: Not specified Cable in tunnel? Not specified

This data is sourced from National Grid.

4.4 Gas pipelines

Records within 500m 1

High pressure underground gas transmission pipelines.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Pipe Name	Details	
1	On site	MICKLE TRAFFORD TO DEESIDE	Pipe Number: - Pipeline Safety Regulations Number: - Ownership: National Grid Maximum Operating Pressure (Bar): -	Pipeline Diameter (mm): 750 Wall Thickness (mm): - Year of commission: Not specified Abandonment Status: Not abandoned

This data is sourced from National Grid.

4.5 Sites determined as Contaminated Land

Records within 500m 0

Contaminated Land Register of sites designated under Part 2a of the Environmental Protection Act 1990.

This data is sourced from Local Authority records.

4.6 Control of Major Accident Hazards (COMAH)

Records within 500m

Control of Major Accident Hazards (COMAH) sites. This data includes upper and lower tier sites, and includes a historical archive of COMAH sites and Notification of Installations Handling Hazardous Substances (NIHHS) records.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Company	Address	Operational status	Tier
2	On site	Great Bear Distribution Limited	Great Bear Distribution Limited, Flintshire, Deeside Industrial Park, Zone 3, Weighbridge Road, Flintshire, Clwyd, CH5 2LL	Current COMAH Site	COMAH Upper Tier Operator

This data is sourced from the Health and Safety Executive.

4.7 Regulated explosive sites

Records within 500m 0

Sites registered and licensed by the Health and Safety Executive under the Manufacture and Storage of Explosives Regulations 2005 (MSER). The last update to this data was in April 2011.

This data is sourced from the Health and Safety Executive.

4.8 Hazardous substance storage/usage

Records within 500m

Consents granted for a site to hold certain quantities of hazardous substances at or above defined limits in accordance with the Planning (Hazardous Substances) Regulations 2015.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Details	
В	On site	Application reference number: 50527 Application status: Approved Application date: 28/03/2013 Address: Great Bear Distribution, Deeside Industrial Park, Zone 3, Weighbridge Road, Flintshire, Wales, CH5 2LL	Details: No Details Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified

This data is sourced from Local Authority records.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

4.9 Historical licensed industrial activities (IPC)

Records within 500m 0

Integrated Pollution Control (IPC) records of substance releases to air, land and water. This data represents a historical archive as the IPC regime has been superseded.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.10 Licensed industrial activities (Part A(1))

Records within 500m 13

Records of Part A(1) installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Details	
ID	Location	Details	
G	111m SW	Operator: Enfinium Parc Adfer Operations Ltd Installation Name: Parc Adfer Energy Recovery Facility Process: RECOVERY OR A MIX OF RECOVERY AND DISPOSAL OF NON-HAZARDOUS WASTE WITH A CAPACITY EXCEEDING 75 TONNES PER DAY (OR 100 TONNES PER DAY IF THE ONLY WASTE TREATMENT ACTIVITY IS ANAEROBIC DIGESTION) INVOLVING ONE OR MORE OF THE FOLLOWING ACTIVITIES, AND EXCLUDING ACTIVITIES COVERED BY COUNCIL DIRECTIVE 91/271/EEC—TREATMENT OF SLAGS AND ASHES Permit Number: AB3092CV Original Permit Number: -	EPR Reference: - Issue Date: 19/12/2022 Effective Date: 19/12/2022 Last date noted as effective: 25/05/2023 Status: Effective
G	111m SW	Operator: Enfinium Parc Adfer Operations Ltd Installation Name: Parc Adfer Energy Recovery Facility Process: THE INCINERATION OF NON-HAZARDOUS WASTE IN A WASTE INCINERATION PLANT OR WASTE CO-INCINERATION PLANT WITH A CAPACITY EXCEEDING 3 TONNES PER HOUR Permit Number: AB3092CV Original Permit Number: -	EPR Reference: - Issue Date: 19/12/2022 Effective Date: 19/12/2022 Last date noted as effective: 25/05/2023 Status: Effective
G	111m SW	Operator: WTI UK LTD Installation Name: PARC ADFER ENERY RECOVERY FACILITY Process: - Permit Number: AB3092CV Original Permit Number: -	EPR Reference: - Issue Date: 28/10/2015 Effective Date: 28/10/2015 Last date noted as effective: 01/04/2017 Status: ISSUED

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
G	111m SW	Operator: PARC ADFER OPERATIONS LTD Installation Name: PARC ADFER ENERY RECOVERY FACILITY Process: - Permit Number: AB3092CV Original Permit Number: -	EPR Reference: - Issue Date: 08/06/2017 Effective Date: 08/06/2017 Last date noted as effective: 01/04/2018 Status: EFFECTIVE
G	111m SW	Operator: PARC ADFER OPERATIONS LTD Installation Name: PARC ADFER ENERY RECOVERY FACILITY Process: - Permit Number: AB3092CV Original Permit Number: -	EPR Reference: - Issue Date: 08/06/2017 Effective Date: 08/06/2017 Last date noted as effective: 01/04/2018 Status: EFFECTIVE
17	320m S	Operator: GAZ DE FRANCE MARKETING LIMITED Installation Name: DEESIDE PAPERMILL Process: COMBUSTION; ANY FUEL =>50MW Permit Number: BV8644IG Original Permit Number: BV8644IG	EPR Reference: - Issue Date: 22/10/2003 Effective Date: 22/10/2003 Last date noted as effective: 17/11/2015 Status: SUPERCEDED
K	345m SE	Operator: Farmers Boy (Deeside) Ltd Installation Name: Farmers Boy (Deeside) Ltd Process: DISPOSAL OF NON-HAZARDOUS WASTE WITH A CAPACITY EXCEEDING 50 TONNES PER DAY (OR 100 TONNES PER DAY IF THE ONLY WASTE TREATMENT ACTIVITY IS ANAEROBIC DIGESTION) INVOLVING ONE OR MORE OF THE FOLLOWING ACTIVITIES, AND EXCLUDING ACTIVITIES COVERED BY COUNCIL DIRECTIVE 91/271/EEC CONCERNING URBAN WASTE- WATER TREATMENT(4)—PHYSICO-CHEMICAL TREATMENT Permit Number: VP3235HS Original Permit Number: -	EPR Reference: - Issue Date: 24/03/2023 Effective Date: 24/03/2023 Last date noted as effective: 25/05/2023 Status: Effective
K	345m SE	Operator: Farmers Boy (Deeside) Ltd Installation Name: Farmers Boy (Deeside) Ltd Process: TREATMENT AND PROCESSING, OTHER THAN EXCLUSIVELY PACKAGING, OF THE FOLLOWING RAW MATERIALS, WHETHER PREVIOUSLY PROCESSED OR UNPROCESSED, INTENDED FOR THE PRODUCTION OF FOOD OR FEED (WHERE THE WEIGHT OF THE FINISHED PRODUCT EXCLUDES PACKAGING)—ONLY ANIMAL RAW MATERIALS (OTHER THAN MILK ONLY) WITH A FINISHED PRODUCT PRODUCTION CAPACITY GREATER THAN 75 TONNES PER DAY Permit Number: VP3235HS Original Permit Number: -	EPR Reference: - Issue Date: 24/03/2023 Effective Date: 24/03/2023 Last date noted as effective: 25/05/2023 Status: Effective

01273 257 755

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
K	345m SE	Operator: FARMERS BOY (DEESIDE) LTD Installation Name: DEESIDE MEAT PROCESSING EPR/VP3235HS Process: ANIMAL VEGETABLE AND FOOD; TREATING ETC ANIMAL RAW MATERIALS (NOT MILK) FOR FOOD >75T/D Permit Number: MP3732VF Original Permit Number: VP3235HS	EPR Reference: - Issue Date: 04/11/2014 Effective Date: 04/11/2014 Last date noted as effective: 17/11/2015 Status: EFFECTIVE
K	345m SE	Operator: FARMERS BOY (DEESIDE) LTD Installation Name: FARMERS BOY (DEESIDE) LTD Process: ANIMAL VEGETABLE AND FOOD; TREATING ETC ANIMAL RAW MATERIALS (NOT MILK) FOR FOOD >75T/D Permit Number: VP3235HS Original Permit Number: VP3235HS	EPR Reference: - Issue Date: 18/01/2012 Effective Date: 18/01/2012 Last date noted as effective: 17/11/2015 Status: SUPERCEDED
K	345m SE	Operator: FARMERS BOY (DEESIDE) LTD Installation Name: FARMERS BOY (DEESIDE) LTD Process: - Permit Number: VP3235HS Original Permit Number: -	EPR Reference: - Issue Date: 28/08/2015 Effective Date: 28/08/2015 Last date noted as effective: 01/04/2017 Status: ISSUED
K	345m SE	Operator: FARMERS BOY (DEESIDE) LTD Installation Name: FARMERS BOY (DEESIDE) LTD Process: TREATMENT AND PROCESSING, OTHER THAN EXCLUSIVELY PACKAGING, OF THE FOLLOWING RAW Permit Number: VP3235HS Original Permit Number: MP3732VF	EPR Reference: - Issue Date: 28/08/2015 Effective Date: 28/08/2015 Last date noted as effective: 01/04/2018 Status: EFFECTIVE
20	481m SE	Operator: TOYOTA MOTOR MANUFACTURING UK LTD Installation Name: DEESIDE ENGINE CASTING PLANT Process: NON-FERROUS METALS; MELTING WITH CAPACITY >4T/D LEAD/CADMIUM OR 20T/D OTHERS Permit Number: BK6483IU Original Permit Number: BK6483IU	EPR Reference: - Issue Date: 20/12/2002 Effective Date: 20/12/2002 Last date noted as effective: 17/11/2015 Status: SUPERCEDED

This data is sourced from the Environment Agency and Natural Resources Wales.

4.11 Licensed pollutant release (Part A(2)/B)

Records within 500m 2

Records of Part A(2) and Part B installations regulated under the Environmental Permitting (England and Wales) Regulations 2016 for the release of substances to the environment.

Features are displayed on the Current industrial land use map on page 42 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Address	Details	
Α	On site	Commercial Colours, Zone 3, Weighbridge Road, Deeside Industrial Park, Flintshire, CH5 2LL	Process: Respraying of Road Vehicles Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified
19	393m SE	Toyota Manufacturing UK, Zone 3, Deeside Industrial Park, Deeside, Flintshire, CH5 2TW	Process: Engineering Works Status: Current Permit Permit Type: Part B	Enforcement: No Enforcement Notified Date of enforcement: No Enforcement Notified Comment: No Enforcement Notified

This data is sourced from Local Authority records.

4.12 Radioactive Substance Authorisations

Records within 500m 0

Records of the storage, use, accumulation and disposal of radioactive substances regulated under the Radioactive Substances Act 1993.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.13 Licensed Discharges to controlled waters

Records within 500m 5

Discharges of treated or untreated effluent to controlled waters under the Water Resources Act 1991. Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Address	Details	
3	On site	DEESIDE TITANIUM LTD WEIGHBRIDGE RO, DEESIDE TITANIUM LTD WEIGHBRIDGE, WEIGHBRIDGE ROAD DEESIDE, DEESIDE	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: CM0093801 Permit Version: 1 Receiving Water: UN-NAMED TRIB. OF FINGERPOST D	Status: REVOKED - UNSPECIFIED Issue date: 14/10/1982 Effective Date: 14/10/1982 Revocation Date: 30/08/1993
5	On site	DEESIDE TITANIUM LTD WEIGHBRIDGE RO, DEESIDE TITANIUM LTD WEIGHBRIDGE, WEIGHBRIDGE ROAD DEESIDE, DEESIDE	Effluent Type: SEWAGE DISCHARGES - FINAL/TREATED EFFLUENT - NOT WATER COMPANY Permit Number: CM0093801 Permit Version: 2 Receiving Water: UN-NAMED TRIB. OF FINGERPOST D	Status: CONSENT EXPIRED - TIME LIMIT Issue date: 31/08/1993 Effective Date: 31/08/1993 Revocation Date: 03/05/1994

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Address	Details	
16	300m E	PS 2 (PHASE 2) DEESIDE INDUSTRIAL P, PS 2 (PHASE 2) DEESIDE INDUSTRIA, DEESIDE INDUSTRIAL PARK	Effluent Type: SEWAGE DISCHARGES - SEWER STORM OVERFLOW - NOT WATER COMPANY Permit Number: CG0367001 Permit Version: 0 Receiving Water: SHOTWICK BROOK	Status: Effective Issue date: 12/03/1996 Effective Date: 12/03/1996 Revocation Date: -
N	433m NW	DEESIDE TITANIUM LTD. DEESIDE	Effluent Type: TRADE DISCHARGES - UNSPECIFIED Permit Number: CM0092901 Permit Version: 1 Receiving Water: SURFACE WATER LAGOON TO ESTUAR	Status: REVOKED - UNSPECIFIED Issue date: 23/02/1982 Effective Date: 23/02/1982 Revocation Date: 26/08/1993
N	433m NW	DEESIDE TITANIUM LTD. DEESIDE	Effluent Type: TRADE DISCHARGES - UNSPECIFIED Permit Number: CM0092901 Permit Version: 2 Receiving Water: SURFACE WATER LAGOON TO ESTUAR	Status: CONSENT EXPIRED - TIME LIMIT Issue date: 27/08/1993 Effective Date: 27/08/1993 Revocation Date: 03/05/1994

This data is sourced from the Environment Agency and Natural Resources Wales.

4.14 Pollutant release to surface waters (Red List)

Records within 500m 0

Discharges of specified substances under the Environmental Protection (Prescribed Processes and Substances) Regulations 1991.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.15 Pollutant release to public sewer

Records within 500m

Discharges of Special Category Effluents to the public sewer.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.16 List 1 Dangerous Substances

Records within 500m 0

Discharges of substances identified on List I of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.17 List 2 Dangerous Substances

Records within 500m 0

Discharges of substances identified on List II of European Directive E 2006/11/EC, and regulated under the Environmental Damage (Prevention and Remediation) Regulations 2015.

This data is sourced from the Environment Agency and Natural Resources Wales.

4.18 Pollution Incidents (EA/NRW)

Records within 500m 16

Records of substantiated pollution incidents. Since 2006 this data has only included category 1 (major) and 2 (significant) pollution incidents.

Features are displayed on the Current industrial land use map on page 42 >

ID	Location	Details	
4	On site	Incident Date: 10/05/2013 Incident Identification: 1111593 Pollutant: Multiple Pollutants Pollutant Description: 2 Pollutants Including Smoke	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
8	72m NW	Incident Date: 25/10/2001 Incident Identification: 38959 Pollutant: Other Pollutant Pollutant Description: Other	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 3 (Minor)
Н	121m NW	Incident Date: 25/07/2003 Incident Identification: 176581 Pollutant: Specific Waste Materials:Specific Waste Materials Pollutant Description: Asbestos:Commercial Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 2 (Significant) Air Impact: Category 4 (No Impact)
Н	121m NW	Incident Date: 25/07/2003 Incident Identification: 176581 Pollutant: Specific Waste Materials Pollutant Description: Asbestos :Commercial Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 2 (Significant) Air Impact: Category 4 (No Impact)

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
Н	121m NW	Incident Date: 25/07/2003 Incident Identification: 176581 Pollutant: Specific Waste Materials Pollutant Description: Commercial Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 2 (Significant) Air Impact: Category 4 (No Impact)
Н	121m NW	Incident Date: 25/07/2003 Incident Identification: 176581 Pollutant: Specific Waste Materials Pollutant Description: Asbestos	Water Impact: Category 4 (No Impact) Land Impact: Category 2 (Significant) Air Impact: Category 4 (No Impact)
Н	121m NW	Incident Date: 25/07/2003 Incident Identification: 176581 Pollutant: Specific Waste Materials Pollutant Description: Asbestos Commercial Waste	Water Impact: Category 4 (No Impact) Land Impact: Category 2 (Significant) Air Impact: Category 4 (No Impact)
10	135m N	Incident Date: 02/01/2002 Incident Identification: 50197 Pollutant: Inert Materials and Wastes Pollutant Description: Construction and Demolition Materials and Wastes	Water Impact: Category 4 (No Impact) Land Impact: Category 3 (Minor) Air Impact: Category 4 (No Impact)
11	169m SE	Incident Date: 28/05/2019 Incident Identification: 1903415 Pollutant: General Biodegradable Materials and Waste Pollutant Description: Animal and Vegetable Oil	Water Impact: Category 2 (Significant) Land Impact: No Details Air Impact: No Details
15	240m NW	Incident Date: 16/11/2002 Incident Identification: 121196 Pollutant: General Biodegradable Materials and Wastes Pollutant Description: Natural Organic Material	Water Impact: Category 4 (No Impact) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
18	374m SW	Incident Date: 13/07/2013 Incident Identification: 1132738 Pollutant: Contaminated Water Pollutant Description: Firefighting Run-Off	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
L	396m SE	Incident Date: 25/02/2016 Incident Identification: 1413813 Pollutant: Atmospheric Pollutants and Effects Pollutant Description: Smoke	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)
L	425m SE	Incident Date: 27/06/2013 Incident Identification: 1126422 Pollutant: Contaminated Water Pollutant Description: Other Contaminated Water	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
L	426m SE	Incident Date: 11/06/2013 Incident Identification: 1121201 Pollutant: Contaminated Water Pollutant Description: Other Contaminated Water	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
L	458m SE	Incident Date: 04/06/2013 Incident Identification: 1118720 Pollutant: Contaminated Water Pollutant Description: Other Contaminated Water	Water Impact: - Land Impact: Category 4 (No Impact) Air Impact: Category 3 (Minor)
21	499m N	Incident Date: 29/06/2003 Incident Identification: 169671 Pollutant: Other Pollutant Pollutant Description: Other	Water Impact: Category 3 (Minor) Land Impact: Category 4 (No Impact) Air Impact: Category 4 (No Impact)

This data is sourced from the Environment Agency and Natural Resources Wales.

4.19 Pollution inventory substances

Records within 500m 0

The pollution inventory (substances) includes reporting on annual emissions of certain regulated substances to air, controlled waters and land. A reporting threshold for each substance is also included. Where emissions fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.20 Pollution inventory waste transfers

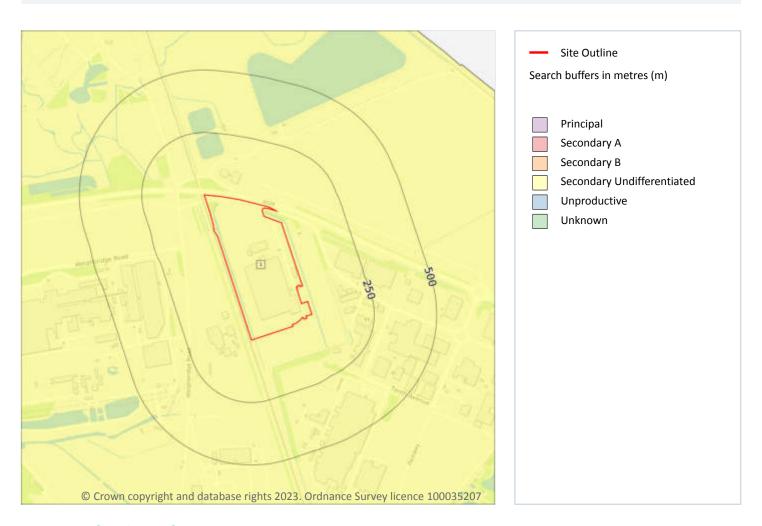
Records within 500m 0

The pollution inventory (waste transfers) includes reporting on annual transfers and recovery/disposal of controlled wastes from a site. A reporting threshold for each waste type is also included. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

4.21 Pollution inventory radioactive waste

Records within 500m


The pollution inventory (radioactive wastes) includes reporting on annual releases of radioactive substances from a site, including the means of release. Where releases fall below the reporting threshold, no value will be given. The data is given for the most recent complete year available.

This data is sourced from the Environment Agency and the Scottish Environment Protection Agency.

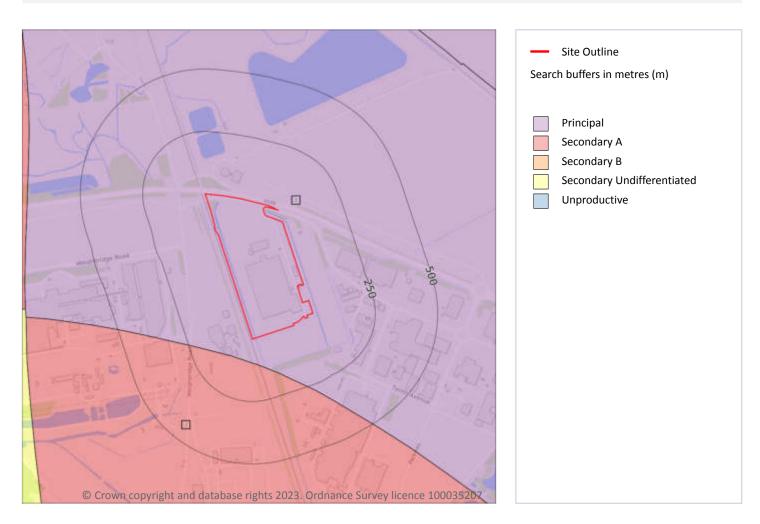
5 Hydrogeology - Superficial aquifer

5.1 Superficial aquifer

Records within 500m 1

Aquifer status of groundwater held within superficial geology.

Features are displayed on the Hydrogeology map on page 55 >


ID	Location	Designation	Description
1	On site	Secondary Undifferentiated	Assigned where it is not possible to attribute either category A or B to a rock type. In general these layers have previously been designated as both minor and non-aquifer in different locations due to the variable characteristics of the rock type

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Bedrock aquifer

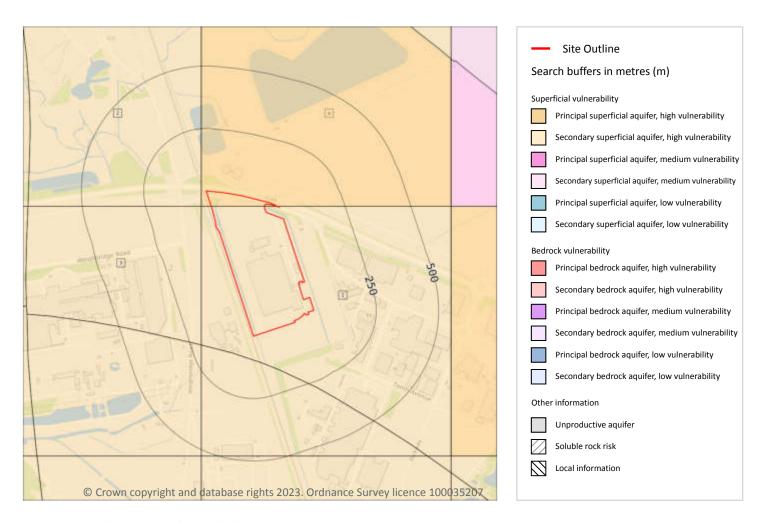
5.2 Bedrock aquifer

Records within 500m 2

Aquifer status of groundwater held within bedrock geology.

Features are displayed on the Bedrock aquifer map on page 56 >

IC	Location	Designation	Description
1	On site	Principal	Geology of high intergranular and/or fracture permeability, usually providing a high level of water storage and may support water supply/river base flow on a strategic scale. Generally principal aquifers were previously major aquifers
2	91m S	Secondary A	Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers


Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

Groundwater vulnerability

5.3 Groundwater vulnerability

Records within 50m 5

An assessment of the vulnerability of groundwater to a pollutant discharged at ground level based on the hydrological, geological, hydrogeological and soil properties within a one kilometre square grid. Groundwater vulnerability is described as High, Medium or Low as follows:

- High Areas able to easily transmit pollution to groundwater. They are likely to be characterised by high leaching soils and the absence of low permeability superficial deposits.
- Medium Intermediate between high and low vulnerability.
- Low Areas that provide the greatest protection from pollution. They are likely to be characterised by low leaching soils and/or the presence of superficial deposits characterised by a low permeability.

Features are displayed on the Groundwater vulnerability map on page 58 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Summary	Soil / surface	Superficial geology	Bedrock geology
1	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: >10m Patchiness value: >90% Recharge potential: High	Vulnerability: Low Aquifer type: Principal Flow mechanism: Well connected fractures
Α	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: >10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Principal Flow mechanism: Intergranular
Α	On site	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: <300mm/year	Vulnerability: High Aquifer type: Secondary Thickness: >10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Principal Flow mechanism: Intergranular
2	19m NW	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: >10m Patchiness value: >90% Recharge potential: Low	Vulnerability: Low Aquifer type: Principal Flow mechanism: Well connected fractures
3	37m NW	Summary Classification: Secondary superficial aquifer - High Vulnerability Combined classification: Productive Bedrock Aquifer, Productive Superficial Aquifer	Leaching class: High Infiltration value: >70% Dilution value: 300- 550mm/year	Vulnerability: High Aquifer type: Secondary Thickness: >10m Patchiness value: >90% Recharge potential: High	Vulnerability: Low Aquifer type: Principal Flow mechanism: Well connected fractures

This data is sourced from the British Geological Survey, the Environment Agency and Natural Resources Wales.

5.4 Groundwater vulnerability- soluble rock risk

Records on site 0

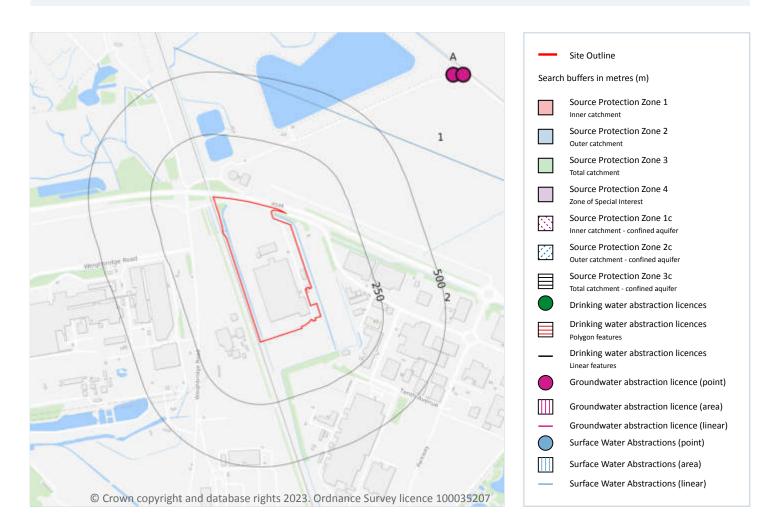
This dataset identifies areas where solution features that enable rapid movement of a pollutant may be present within a 1km grid square.

This data is sourced from the British Geological Survey and the Environment Agency.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

5.5 Groundwater vulnerability- local information

Records on site 0


This dataset identifies areas where additional local information affecting vulnerability is held by the Environment Agency. Further information can be obtained by contacting the Environment Agency local Area groundwater team through the Environment Agency National Customer Call Centre on 03798 506 506 or by email on enquiries@environment-agency.gov.uk.

This data is sourced from the British Geological Survey and the Environment Agency.

Abstractions and Source Protection Zones

5.6 Groundwater abstractions

Records within 2000m 7

Licensed groundwater abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, between two points (line data) or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 61 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
2	475m E	Status: Historical Licence No: WA/067/0010/0015 Details: Pollution Remediation - Very Low Direct Source: Deeside Industrial Estate Point: - Data Type: Poly4 Name: - Easting: 331947 Northing: 371621	Annual Volume (m³): 7500 Max Daily Volume (m³): - Original Application No: - Original Start Date: Feb 3 2020 12:00AM Expiry Date: Mar 31 2027 12:00AM Issue No: - Version Start Date: - Version End Date: -
Α	870m NE	Status: Historical Licence No: 24/67/10/0090 Details: Process Water Direct Source: EAW Groundwater Point: BOREHOLE 7 Data Type: Point Name: Tata Steel UK Limited Easting: 331980 Northing: 372551	Annual Volume (m³): 500000 Max Daily Volume (m³): 6000 Original Application No: - Original Start Date: 27/11/1980 Expiry Date: - Issue No: 104 Version Start Date: 18/03/2015 Version End Date: -
A	870m NE	Status: Active Licence No: 24/67/10/0090 Details: Process Water - Medium Direct Source: - Point: - Data Type: Point Name: - Easting: 331980 Northing: 372551	Annual Volume (m³): 500000 Max Daily Volume (m³): - Original Application No: - Original Start Date: 18/03/2015 Expiry Date: - Issue No: - Version Start Date: - Version End Date: -
A	901m NE	Status: Historical Licence No: 24/67/10/0090 Details: Process Water Direct Source: EAW Groundwater Point: BOREHOLE 7A Data Type: Point Name: Tata Steel UK Limited Easting: 332020 Northing: 372551	Annual Volume (m³): 500000 Max Daily Volume (m³): 6000 Original Application No: - Original Start Date: 27/11/1980 Expiry Date: - Issue No: 104 Version Start Date: 18/03/2015 Version End Date: -
A	901m NE	Status: Active Licence No: 24/67/10/0090 Details: Process Water - Medium Direct Source: - Point: - Data Type: Point Name: - Easting: 332020 Northing: 372551	Annual Volume (m³): 500000 Max Daily Volume (m³): - Original Application No: - Original Start Date: 18/03/2015 Expiry Date: - Issue No: - Version Start Date: - Version End Date: -

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Details	
-	1502m E	Status: Historical Licence No: 24/67/10/0090 Details: Process Water Direct Source: EAW Groundwater Point: BOREHOLE 4 Data Type: Point Name: Tata Steel UK Limited Easting: 332940 Northing: 371780	Annual Volume (m³): 500000 Max Daily Volume (m³): 6000 Original Application No: - Original Start Date: 27/11/1980 Expiry Date: - Issue No: 104 Version Start Date: 18/03/2015 Version End Date: -
-	1502m E	Status: Active Licence No: 24/67/10/0090 Details: Process Water - Medium Direct Source: - Point: - Data Type: Point Name: - Easting: 332940 Northing: 371780	Annual Volume (m³): 500000 Max Daily Volume (m³): - Original Application No: - Original Start Date: 18/03/2015 Expiry Date: - Issue No: - Version Start Date: - Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

5.7 Surface water abstractions

Records within 2000m 1

Licensed surface water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

Features are displayed on the Abstractions and Source Protection Zones map on page 61 >

ID	Location	Details	
1	444m N	Status: Historical Licence No: 24/67/10/0111 Details: Spray Irrigation - Direct Direct Source: EAW Surface Water Point: BURTON & PUDDINGTON ARTERIAL DITCH Data Type: Line Name: WT Banks & Co (Farming) Ltd Easting: 330860 Northing: 372660	Annual Volume (m³): 54550 Max Daily Volume (m³): 2180 Original Application No: - Original Start Date: 14/06/1988 Expiry Date: - Issue No: 102 Version Start Date: 01/04/2003 Version End Date: -

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

5.8 Potable abstractions

Records within 2000m 0

Licensed potable water abstractions for sites extracting more than 20 cubic metres of water a day and includes active and historical records. The data may be for a single abstraction point, a stretch of watercourse or a larger area.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.9 Source Protection Zones

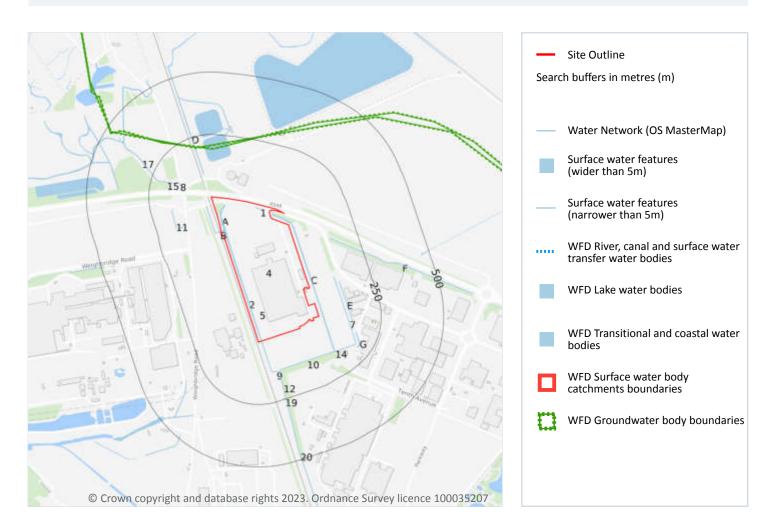
Records within 500m 0

Source Protection Zones define the sensitivity of an area around a potable abstraction site to contamination.

This data is sourced from the Environment Agency and Natural Resources Wales.

5.10 Source Protection Zones (confined aquifer)

Records within 500m 0


Source Protection Zones in the confined aquifer define the sensitivity around a deep groundwater abstraction to contamination. A confined aquifer would normally be protected from contamination by overlying geology and is only considered a sensitive resource if deep excavation/drilling is taking place.

This data is sourced from the Environment Agency and Natural Resources Wales.

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m 22

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 65 >

ID	Location	Type of water feature	Ground level	Permanence	Name
1	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location	Type of water feature	Ground level	Permanence	Name
On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
On site	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
7m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
16m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
94m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
106m E	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
121m E	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
122m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
129m S	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
131m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
131m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
	On site On site On site On site 7m N 16m NW 94m NW 106m E 121m E 122m NW 131m SE	On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. The N Inland river not influenced by normal tidal action. Inland river not influenced by normal tidal action.	On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal action. On site Inland river not influenced by normal tidal on ground surface action. The N Inland river not influenced by normal tidal on ground surface action. 16m NW Inland river not influenced by normal tidal on ground surface action. 106m E Inland river not influenced by normal tidal on ground surface action. 121m E Inland river not influenced by normal tidal on ground surface action. 122m NW Inland river not influenced by normal tidal on ground surface action. 129m S Inland river not influenced by normal tidal Underground action. 131m SE Inland river not influenced by normal tidal on ground surface action.	Inland river not influenced by normal tidal action. On ground surface

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Type of water feature	Ground level	Permanence	Name
F	139m NE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
12	139m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
14	142m SE	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
15	156m NW	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
G	162m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
17	222m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
19	246m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
20	247m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m 11

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 65 >

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

Records on site 1

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 65 >

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
4	On site	Coastal catchment	Not part of a river WB catchment	166	Dee Estuary	Dee

This data is sourced from the Environment Agency and Natural Resources Wales.

6.4 WFD Surface water bodies

Records identified 0

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site.

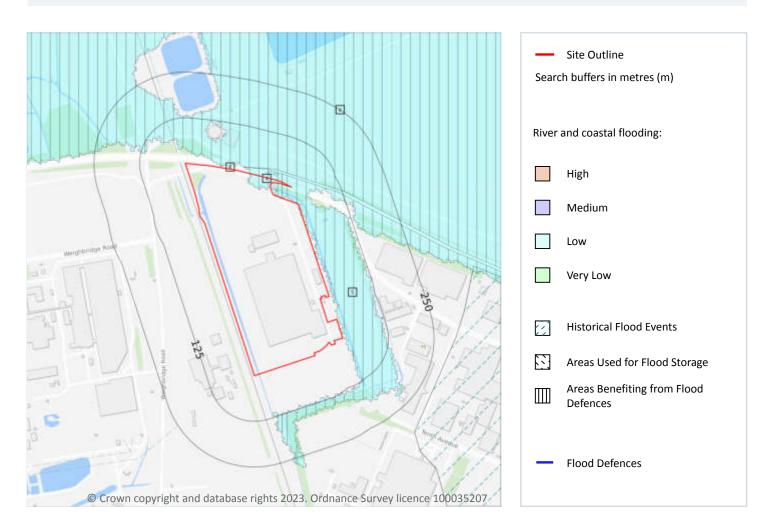
This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

Records on site 1

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place.

Features are displayed on the Hydrology map on page 65 >


ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
5	On site	Dee Carboniferous Coal Measures	GB41102G204800	Poor	Poor	Good	2017

This data is sourced from the Environment Agency and Natural Resources Wales.

7 River and coastal flooding

7.1 Risk of flooding from rivers and the sea

Records within 50m 4

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m within the Risk of Flooding from Rivers and Sea (RoFRaS)/Flood Risk Assessment Wales (FRAW) models. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition. The risk categories for RoFRaS for rivers and the sea and FRAW for rivers are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 100 chance) or High (greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 200 but greater than or equal to 1 in 1000 chance), Medium (less than 1 in 30 but greater than or equal to 1 in 200 chance) or High (greater than or equal to 1 in 30 chance).

Features are displayed on the River and coastal flooding map on page 69 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Distance	Flood risk category
On site	Low
0 - 50m	Low

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m 0

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m 0

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

This data is sourced from the Environment Agency and Natural Resources Wales.

7.4 Areas Benefiting from Flood Defences

Records within 250m 5

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

Features are displayed on the River and coastal flooding map on page 69 >

ID	Location	
4	On site	Area benefiting from flood defences
5	On site	Area benefiting from flood defences
6	4m N	Area benefiting from flood defences
7	5m NW	Area benefiting from flood defences
8	7m NW	Area benefiting from flood defences

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from the Environment Agency and Natural Resources Wales.

7.5 Flood Storage Areas

Records within 250m 0

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

This data is sourced from the Environment Agency and Natural Resources Wales.

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m 1

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

Features are displayed on the River and coastal flooding map on page 69 >

Location Type
On site Zone 2 - (Fluvial /Tidal Models)

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

7.7 Flood Zone 3

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

Features are displayed on the River and coastal flooding map on page 69 >

Location	Туре
On site	Zone 3 - (Fluvial /Tidal Models)

This data is sourced from the Environment Agency and Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS 874130 1081435 Grid ref: 331237 371779

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site	1 in 30 year, 0.3m - 1.0m
Highest risk within 50m	1 in 30 year, 0.3m - 1.0m

Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 74 >

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Between 0.3m and 1.0m
1 in 250 year	Between 0.3m and 1.0m
1 in 100 year	Between 0.3m and 1.0m
1 in 30 year	Between 0.3m and 1.0m

This data is sourced from Ambiental Risk Analytics.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

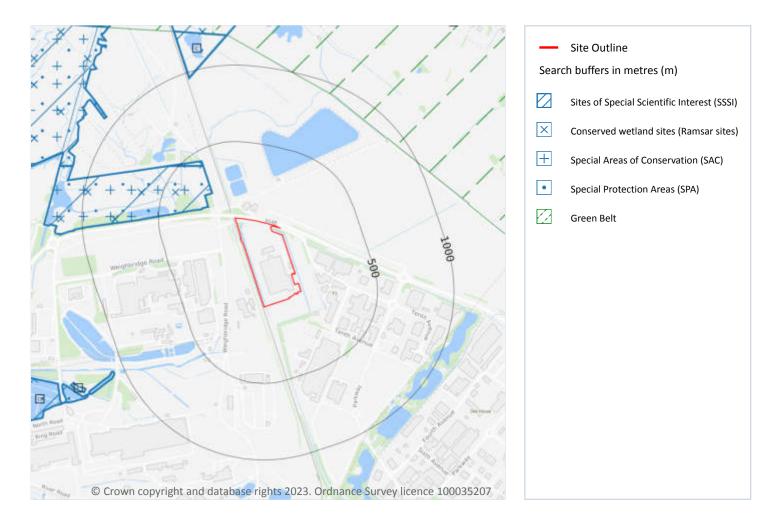
9 Groundwater flooding

9.1 Groundwater flooding

Highest risk on site	High
Highest risk within 50m	High

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 76 >


This data is sourced from Ambiental Risk Analytics.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m 10

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

Features are displayed on the Environmental designations map on page 77 >

ID	Location	Name	Data source
1	189m NW	Dee Estuary / Aber Afon Dyfrdwy	Natural Resources Wales

us with any questions at: Date: 15 June 2023

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Data source
2	399m NW	Dee Estuary / Aber Afon Dyfrdwy	Natural Resources Wales
В	963m NW	Inner Marsh Farm	Natural England
С	963m NW	Inner Marsh Farm	Natural Resources Wales
D	1069m SW	Shotton Lagoons and Reedbeds	Natural Resources Wales
Е	1283m SW	Shotton Lagoons and Reedbeds	Natural Resources Wales
F	1496m NW	Dee Estuary	Natural England
-	1663m SW	Shotton Lagoons and Reedbeds	Natural Resources Wales
-	1704m SW	Shotton Lagoons and Reedbeds	Natural Resources Wales
-	1769m S	Afon Dyfrdwy (River Dee)	Natural Resources Wales

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m 10

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

Features are displayed on the Environmental designations map on page 77 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** 189m NW Name: The Dee Estuary (Wales) Overview: The Dee is a large funnel-shaped sheltered estuary Site status: and is one of the top ten estuaries in the UK for wintering and Data source: Natural Resources Wales passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** В 962m NW Name: The Dee Estuary Overview: The Dee is a large funnel-shaped sheltered estuary Site status: Listed and is one of the top ten estuaries in the UK for wintering and Data source: Natural England passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Details
C	962m NW	Name: The Dee Estuary (Wales) Site status: - Data source: Natural Resources Wales	Overview: The Dee is a large funnel-shaped sheltered estuary and is one of the top ten estuaries in the UK for wintering and passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes alo

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Details
D	1069m SW	Name: The Dee Estuary (Wales) Site status: - Data source: Natural Resources Wales	Overview: The Dee is a large funnel-shaped sheltered estuary and is one of the top ten estuaries in the UK for wintering and passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes alo

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Site	Details
В	1195m N	Name: The Dee Estuary (England) Site status: - Data source: Natural Resources Wales	Overview: The Dee is a large funnel-shaped sheltered estuary and is one of the top ten estuaries in the UK for wintering and passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes alo

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** 4 1210m NW Name: The Dee Estuary Overview: The Dee is a large funnel-shaped sheltered estuary Site status: Listed and is one of the top ten estuaries in the UK for wintering and Data source: Natural England passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** Ε 1282m SW Name: The Dee Estuary (Wales) Overview: The Dee is a large funnel-shaped sheltered estuary Site status: and is one of the top ten estuaries in the UK for wintering and Data source: Natural Resources Wales passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** F 1496m NW Name: The Dee Estuary (England) Overview: The Dee is a large funnel-shaped sheltered estuary Site status: and is one of the top ten estuaries in the UK for wintering and Data source: Natural Resources Wales passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** 1663m SW Name: The Dee Estuary (Wales) Overview: The Dee is a large funnel-shaped sheltered estuary Site status: and is one of the top ten estuaries in the UK for wintering and Data source: Natural Resources Wales passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad, Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location ID Site **Details** 1704m SW Name: The Dee Estuary (Wales) Overview: The Dee is a large funnel-shaped sheltered estuary Site status: and is one of the top ten estuaries in the UK for wintering and Data source: Natural Resources Wales passage waterfowl populations. The estuary supports internationally important numbers of waterfowl and waders. The estuary is an accreting system and the extent of saltmarsh continues to expand as the estuary seeks to achieve a new equilibrium situation following large-scale historical land-claim at the head of the estuary which commenced in the 1730s. Nevertheless, the estuary still supports extensive areas of intertidal sand and mudflats as well as saltmarsh. Where land-claim has not occurred, the saltmarshes grade into transitional brackish and freshwater swamp vegetation, on the upper shore. The site includes the three sandstone islands of Hilbre with their important cliff vegetation and maritime heathland/grassland, the sand dune system between the Point of Ayr and Prestatyn in Wales and Red Rocks in England, various Welsh coastal fields historically reclaimed from the estuary but used by the Dee Estuary wintering waterfowl populations, freshwater lagoons and reedbeds at Shotton supporting the largest common tern breeding colony in Wales and freshwater lagoons at Inner Marsh Farm used by waterfowl throughout the year but particularly in winter. The two shorelines of the estuary show a marked contrast between the industrialised usage of the coastal belt in Wales and residential and recreational usage in England. Ramsar criteria: Ramsar criterion 1 Extensive intertidal mud and sand flats (20 km by 9 km) with large expanses of saltmarsh towards the head of the estuary. Habitats Directive Annex I features present on the pSAC include: H1130 Estuaries H1140 Mudflats and sandflats not covered by seawater at low tide H1210 Annual vegetation of drift lines H1230 Vegetated sea cliffs of the Atlantic and Baltic coasts H1310 Salicornia and other annuals colonising mud and sand H1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) H2110 Embryonic shifting dunes H2120 Shifting dunes along the shoreline with Ammophila arenaria ("white dunes") H2130 Fixed dunes with herbaceous vegetation ("grey dunes") H2190 Humid dune slacks Criterion 2, it supports breeding colonies of the vulnerable Natterjack Toad,

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

Epidalea calamita

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

10.3 Special Areas of Conservation (SAC)

Records within 2000m 4

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

Features are displayed on the Environmental designations map on page 77 >

ID	Location	Name	Features of interest	Habitat description	Data source
A	189m NW	Dee Estuary / Aber Dyfrdwy (Wales)	Estuaries; Intertidal mudflats and sandflats; Lagoons; Annual vegetation of drift lines; Vegetated sea cliffs; Glasswort and other annuals colonising mud and sand; Cord-grass swards; Atlantic salt meadows; Shifting dunes; Shifting dunes with marram; Dune grassland; Humid dune slacks; Dry heaths; Sea lamprey; River lamprey; Twaite shad; Otter; Grey seal; Petalwort.	Shingle, Sea cliffs, Islets; Salt marshes, Salt pastures, Salt steppes; Humid grassland, Mesophile grassland; Improved grassland; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Bogs, Marshes, Water fringed vegetation, Fens; Broadleaved deciduous woodland; Coastal sand dunes, Sand beaches, Machair; Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites)	Natural Resource s Wales
F	1496m NW	Dee Estuary / Aber Dyfrdwy (England)	Estuaries; Intertidal mudflats and sandflats; Lagoons; Annual vegetation of drift lines; Vegetated sea cliffs; Glasswort and other annuals colonising mud and sand; Cord-grass swards; Atlantic salt meadows; Shifting dunes; Shifting dunes with marram; Dune grassland; Humid dune slacks; Dry heaths; Sea lamprey; River lamprey; Twaite shad; Otter; Grey seal; Petalwort.	Shingle, Sea cliffs, Islets; Salt marshes, Salt pastures, Salt steppes; Humid grassland, Mesophile grassland; Improved grassland; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Bogs, Marshes, Water fringed vegetation, Fens; Broadleaved deciduous woodland; Coastal sand dunes, Sand beaches, Machair; Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites)	Natural Resource s Wales

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Features of interest	Habitat description	Data source
F	1496m NW	Dee Estuary	Estuaries; Intertidal mudflats and sandflats; Lagoons; Annual vegetation of drift lines; Vegetated sea cliffs; Glasswort and other annuals colonising mud and sand; Cord-grass swards; Atlantic salt meadows; Shifting dunes; Shifting dunes with marram; Dune grassland; Humid dune slacks; Dry heaths; Sea lamprey; River lamprey; Twaite shad; Otter; Grey seal; Petalwort.	Shingle, Sea cliffs, Islets; Salt marshes, Salt pastures, Salt steppes; Humid grassland, Mesophile grassland; Improved grassland; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Bogs, Marshes, Water fringed vegetation, Fens; Broadleaved deciduous woodland; Coastal sand dunes, Sand beaches, Machair; Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites)	Natural England
-	1769m S	River Dee and Bala Lake / Afon Dyfrdwy a Llyn Tegid (Wales)	Rivers with floating vegetation often dominated by water-crowfoot; Mixed woodland on base-rich soils associated with rocky slopes; Western acidic oak woodland; Alder woodland on floodplains; Sea lamprey; Brook lamprey; River lamprey; Twaite shad; Atlantic salmon; Bullhead; Freshwater pearl mussel; Otter; Floating water-plantain.	Broad-leaved deciduous woodland; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Improved grassland; Inland water bodies (Standing water, Running water); Salt marshes, Salt pastures, Salt steppes	Natural Resource s Wales

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m 10

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

Features are displayed on the Environmental designations map on page 77 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Species of interest	Habitat description	Data source
Α	189m NW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales
В	963m NW	The Dee Estuary	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural England
C	963m NW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Species of interest	Habitat description	Data source
D	1069m SW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales
В	1196m N	The Dee Estuary (England)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales
5	1211m NW	The Dee Estuary	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural England

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Species of interest	Habitat description	Data source
E	1283m SW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales
6	1496m NW	The Dee Estuary (England)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales
	1663m SW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Name	Species of interest	Habitat description	Data source
	1704m SW	The Dee Estuary (Wales)	Common shelduck; Eurasian teal; Northern pintail; Eurasian oystercatcher; Grey plover; Red knot; Bar-tailed godwit; Eurasian curlew; Common redshank; Common redshank; Sandwich tern; Common tern; Little tern; Black-tailed godwit; Dunlin	Broad-leaved deciduous woodland; Shingle, Sea cliffs, Islets; Coastal sand dunes, Sand beaches, Machair; Mixed woodland; Dry grassland, Steppes; Inland water bodies (Standing water, Running water); Other land (including Towns, Villages, Roads, Waste places, Mines, Industrial sites); Improved grassland; Other arable land; Salt marshes, Salt pastures, Salt steppes; Tidal rivers, Estuaries, Mud flats, Sand flats, Lagoons (including saltwork basins); Humid grassland, Mesophile grassland; Bogs, Marshes, Water fringed vegetation, Fens; Marine areas, Sea inlets	Natural Resources Wales

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m 0

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.6 Local Nature Reserves (LNR)

Records within 2000m 0

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m 0

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

woodland have to be old.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.8 Biosphere Reserves

Records within 2000m 0

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.9 Forest Parks

Records within 2000m 0

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m 0

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m 1

Areas designated to prevent urban sprawl by keeping land permanently open.

Features are displayed on the Environmental designations map on page 77 >

ID	Location	Name	Local Authority name
3	895m NE	Merseyside and Greater Manchester	Cheshire West and Chester

This data is sourced from the Ministry of Housing, Communities and Local Government.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

10.12 Proposed Ramsar sites

Records within 2000m 0

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m 0

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m 0

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m 0

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

10.16 Nitrate Vulnerable Zones

Records within 2000m 8

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These are areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

Location	Name	Туре	NVZ ID	Status
On site	-	Groundwater	148	Existing
184m S	Shotwick Brook NVZ	Surface Water	708	Existing
184m S	-	Surface Water	708	New
897m NE	Neston, England	Groundwater	3	Existing
920m NE	-	Groundwater	3	Existing
931m N	-	Groundwater	3	Existing
1606m E	-	Groundwater	3	Existing
1826m E	-	Groundwater	3	Existing

This data is sourced from Natural England and Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site 2

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

01273 257 755

Features are displayed on the SSSI Impact Zones and Units map on page 98 >

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID Location Type of developments requiring consultation 1 On site Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Wind and Solar - Solar schemes with footprint > 0.5ha, all wind turbines. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m² or footprint exceeds 0.2ha. Residential - Residential development of 50 units or more. Rural residential - Any residential development of 10 or more houses outside existing settlements/urban Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m2, slurry lagoons & digestate stores > 200m2, manure stores > 250t). Combustion - General combustion processes >20mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Landfill. incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 500 tonnes maximum annual operational throughput. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply. 2 On site Infrastructure - Pipelines, pylons and overhead cables, any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Wind and Solar - Solar schemes with footprint > 0.5ha, all wind turbines. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where footprint exceeds 1ha. Residential - Residential development of 50 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 200m², manure stores > 250t). Combustion - General combustion processes >20mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Landfill. incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m² or more.

This data is sourced from Natural England.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

10.18 SSSI Units

Records within 2000m 2

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

Features are displayed on the SSSI Impact Zones and Units map on page 98 >

ID: 16

Location: 963m NW

SSSI name: Inner Marsh Farm

Unit name: Whole Site

Broad habitat: Standing Open Water And Canals

Condition: Favourable

Reportable features:

Feature name	Feature condition	Date of assessment
Aggregations of non-breeding birds - Black-tailed godwit, Limosa limosa islandica	Favourable	21/03/2012
Aggregations of non-breeding birds - Pintail, Anas acuta	Favourable	21/03/2012
Aggregations of non-breeding birds - Teal, Anas crecca	Favourable	21/03/2012

ID: 26

Location: 1496m NW SSSI name: Dee Estuary

Unit name: Southern Salt Marsh Broad habitat: Littoral Sediment

Condition: Favourable

Reportable features:

Feature name	Feature condition	Date of assessment
Aggregations of breeding birds - Common tern, Sterna hirundo	Not Recorded	01/01/1900
Aggregations of breeding birds - Cormorant, Phalacrocorax carbo sinensis	Not Recorded	01/01/1900
Aggregations of breeding birds - Redshank, Tringa totanus	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Bar-tailed godwit, Limosa lapponica	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Black-tailed godwit, Limosa limosa islandica	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Cormorant, Phalacrocorax carbo carbo	Not Recorded	01/01/1900

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Feature name	Feature condition	Date of assessment
Aggregations of non-breeding birds - Curlew, Numenius arquata	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Dunlin, Calidris alpina alpina	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Great crested grebe, Podiceps cristatus	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Grey plover, Pluvialis squatarola	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Knot, Calidris canutus	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Oystercatcher, Haematopus ostralegus	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Pintail, Anas acuta	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Redshank, Tringa totanus	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Ringed plover, Charadrius hiaticula	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Shelduck, Tadorna tadorna	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Teal, Anas crecca	Not Recorded	01/01/1900
Aggregations of non-breeding birds - Wigeon, Anas penelope	Not Recorded	01/01/1900
Estuaries	Favourable	01/12/2010
Floodplain fen (lowland)	Favourable	01/12/2010
Lowland wet neutral grassland (MG11, MG13)	Favourable	01/12/2010
Luperina nickerlii, Sandhill rustic moth	Not Recorded	01/01/1900
SM4-28 - Saltmarsh	Favourable	01/12/2010
Vascular plant assemblage	Not Recorded	01/01/1900

This data is sourced from Natural England and Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m 0

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m 0

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m 0

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic well-being of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m 0

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m 0

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m 0

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m 0

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m 2

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 104 >

ID	Location	Classification	Description
1	On site	Grade 2	Good quality agricultural land
11	191m NW	Grade 5	Very poor quality agricultural land

This data is sourced from Natural Resources Wales.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

12.2 Open Access Land

Records within 250m 0

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m 0

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m 0

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m 0

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m 0

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m 0

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m 0

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m 0

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

106

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 107 >

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	No coverage	No coverage	No coverage	No coverage	NoCov

This data is sourced from the British Geological Survey.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m 0

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

This data is sourced from the British Geological Survey.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m 0

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m 0

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m 0

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

This data is sourced from the British Geological Survey.

14.6 Bedrock faults and other linear features (10k)

Records within 500m 0

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

This data is sourced from the British Geological Survey.

Date: 15 June 2023

15 Geology 1:50,000 scale - Availability

Site Outline
Search buffers in metres (m)
Geological map tile

15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme. Where 50k data is not available, this area has been filled in with 625k scale data.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 111 >

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	EW108_flint_v4

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m 2

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

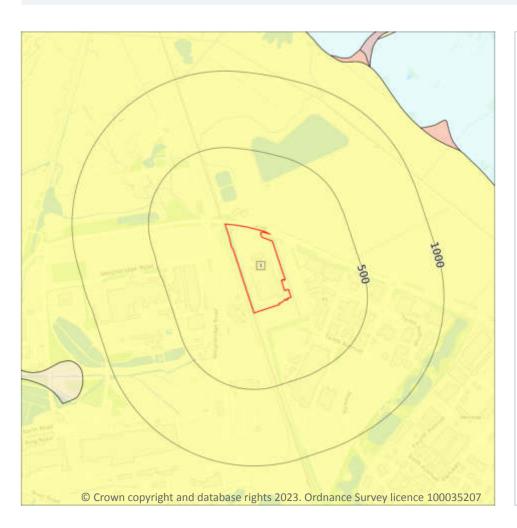
Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 112 >

ID	Location	LEX Code	Description	Rock description
1	On site	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
2	454m SW	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

15.3 Artificial ground permeability (50k)

Records within 50m


A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	Very High	Low

Geology 1:50,000 scale - Superficial

Search buffers in metres (m)

Landslip (50k)

Superficial geology (50k)

Please see table for more details.

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 114 >

ID	Location	LEX Code	Description	Rock description
1	On site	TFD-XCZS	TIDAL FLAT DEPOSITS	CLAY, SILT AND SAND

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

15.5 Superficial permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Intergranular	Moderate	Very Low

This data is sourced from the British Geological Survey.

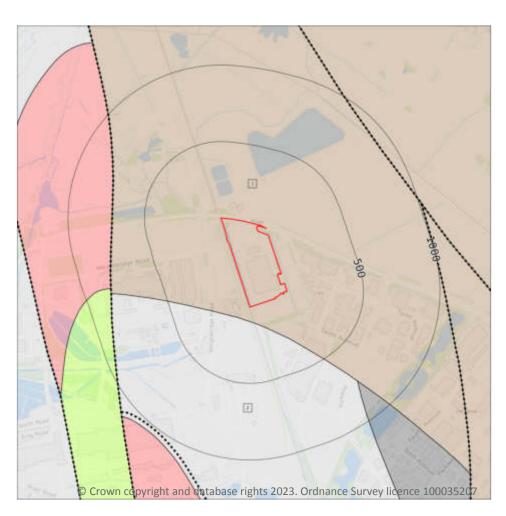
15.6 Landslip (50k)

Records within 500m 0

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)


Records within 50m 0

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

Geology 1:50,000 scale - Bedrock

Search buffers in metres (m)

Bedrock faults and other linear features (50k)

Bedrock geology (50k)

Please see table for more details.

15.8 Bedrock geology (50k)

Records within 500m 2

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 116 >

ID	Location	LEX Code	Description	Rock age
1	On site	KNSF-SDST	KINNERTON SANDSTONE FORMATION - SANDSTONE	-
2	91m S	PLCM-MDSS	PENNINE LOWER COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE	WESTPHALIAN

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

15.9 Bedrock permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Intergranular	High	High

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m 0

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

16 Boreholes

16.1 BGS Boreholes

Records within 250m 86

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 118 >

ID	Location	Grid reference	Name	Length	Confidential	Web link
1	On site	331230 372010	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 48	8.0	N	<u>157675</u> ⊅
Α	On site	331300 371700	LINK 56 DEESIDE TP4	-	Υ	N/A

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Grid reference	Name	Length	Confidential	Web link
Α	On site	331300 371700	LINK 56 DEESIDE TP7	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP9	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP12	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE B	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P4	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P7	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP3	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP5	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP13	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE C	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE F	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P3	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P5	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P8	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP2	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE D	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P2	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP1	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP6	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP8	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP10	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE A	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE E	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P6	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP11	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE TP3A	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P1	-	Υ	N/A
Α	On site	331300 371700	LINK 56 DEESIDE P9	-	Υ	N/A

 $\underline{info@groundsure.com} \nearrow$

01273 257 755

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Grid reference	Name	Length	Confidential	Web link
В	On site	331040 372050	DEESIDE ROAD LINK/RAIL CROSSING. 4	-	Υ	N/A
В	9m NW	331030 372070	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 50	8.0	N	<u>157677</u> ⊅
С	9m NW	331020 372030	DEE COASTAL PATH PHASE 2B 2	-	Υ	N/A
С	9m NW	331020 372030	DEE COASTAL PATH PHASE 2B 3	-	Υ	N/A
В	11m NW	331050 372070	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 49	8.0	N	<u>157676</u> ⊅
D	14m N	331230 372040	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 47	8.05	Ν	<u>157674</u> ⊅
2	15m NW	331090 372070	DEESIDE ROAD LINK/RAIL CROSSING. 5	-	Υ	N/A
С	29m NW	331000 372030	DEE COASTAL PATH PHASE 2B 1	-	Υ	N/A
D	29m N	331250 372050	DEESIDE ROAD LINK/RAIL CROSSING. 6	-	Υ	N/A
3	38m NW	331020 372100	DEESIDE ROAD LINK/RAIL CROSSING. 3	-	Υ	N/A
С	41m NW	330990 372020	DEE COASTAL PATH PHASE 2B 4	-	Υ	N/A
D	46m N	331240 372070	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 46	8.0	N	<u>157673</u> ⊅
4	51m NW	330970 372050	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE 52	8.0	N	<u>157678</u> ⊅
Е	57m NW	330970 372090	DEESIDE ROAD LINK/RAIL CROSSING. 2	-	Υ	N/A
5	61m S	331280 371440	SHOTTON S.I. 7	-	Υ	N/A
Е	69m NW	330970 372110	DEESIDE ROAD LINK/RAIL CROSSING. 1	-	Υ	N/A
F	74m W	331030 371790	Deeside Waste Facility TP2	-	Υ	N/A
6	78m W	331049 371720	Deeside Waste Facility TP5	-	Υ	N/A
7	78m SW	331107 371542	Deeside Waste Facility BH110	-	Υ	N/A
8	78m S	331124 371489	Deeside Waste Facility TP9	-	Υ	N/A
9	78m SW	331066 371666	Deeside Waste Facility BH109	-	Υ	N/A
F	82m W	331026 371775	Deeside Waste Facility BH108	_	Υ	N/A
10	85m NE	331390 372020	750MM MICKLE TRAFFORD TO DEESIDE PIPELINE HA12	2.1	N	<u>157689</u> ⊅
11	94m SW	331066 371614	Deeside Waste Facility TP6	-	Υ	N/A
F	97m W	331009 371780	Deeside Waste Facility HP1	-	Υ	N/A

Date: 15 June 2023

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Grid reference	Name	Length	Confidential	Web link
12	102m W	331020 371730	Deeside Waste Facility TP3	-	Υ	N/A
13	103m NE	331450 371910	SHOTTON S.I. 4	-	Υ	N/A
F	106m W	330993 371799	Deeside Waste Facility TP1	-	Υ	N/A
14	114m SW	331029 371665	Deeside Waste Facility TP4	-	Υ	N/A
15	119m SW	331037 371622	Deeside Waste Facility BH101	-	Υ	N/A
16	120m SW	331092 371451	Deeside Waste Facility BTP1	-	Υ	N/A
17	121m NW	330900 372080	DEESIDE ROAD LINK/RAIL CROSSING. 7	-	Υ	N/A
18	135m W	330969 371780	Deeside Waste Facility BH103	-	Υ	N/A
19	136m S	331098 371402	Deeside Waste Facility TP11	-	Υ	N/A
20	140m NW	330880 372050	DEESIDE ROAD LINK/RAIL CROSSING. 9	-	Υ	N/A
21	158m SW	331024 371539	Deeside Waste Facility TP8	-	Υ	N/A
22	159m N	331360 372150	LAND RECLAMATION 7	15.0	N	<u>157504</u> ⊅
23	162m S	331150 371330	Deeside Waste Facility BH107	-	Υ	N/A
24	168m SW	330983 371630	Deeside Waste Facility BH104	-	Υ	N/A
25	172m N	331200 372210	LAND RECLAMATION 8	15.0	N	<u>157505</u> ↗
26	181m S	331112 371328	Deeside Waste Facility TP12	-	Υ	N/A
27	186m SW	330987 371560	Deeside Waste Facility TP7	-	Υ	N/A
28	191m S	331067 371352	Deeside Waste Facility BH106	-	Υ	N/A
G	199m NW	330830 372000	DEESIDE INDUSTRIAL PARK PLOT A4 27	10.0	N	<u>157668</u> ⊅
29	200m SW	331021 371412	Deeside Waste Facility TP10	-	Υ	N/A
30	205m NW	330820 372110	DEESIDE ROAD LINK/RAIL CROSSING. 8	-	Υ	N/A
G	212m NW	330820 371990	DEESIDE INDUSTRIAL PARK PLOT A4 TP73	3.0	N	<u>157635</u> ⊅
G	218m NW	330820 371970	DEESIDE INDUSTRIAL PARK PLOT A4 TP60	3.0	N	<u>157622</u> ⊅
Н	223m SW	330990 371431	Deeside Waste Facility BH105	-	Υ	N/A
G	224m W	330820 371950	DEESIDE INDUSTRIAL PARK PLOT A4 TP53	3.0	N	<u>157618</u> ⊅
Н	226m SW	330990 371424	Deeside Waste Facility BH105A	-	Υ	N/A
I	233m NW	330790 372020	DEESIDE INDUSTRIAL PARK PLOT A4 TP81	3.0	N	<u>157643</u> 🗷
31	236m W	330820 371910	DEESIDE INDUSTRIAL PARK PLOT A4 15	10.5	N	<u>157659</u> ⊅

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

ID	Location	Grid reference	Name	Length	Confidential	Web link
I	238m NW	330790 372000	DEESIDE INDUSTRIAL PARK PLOT A4 TP72	3.0	N	<u>157634</u> ↗
G	243m W	330800 371950	DEESIDE INDUSTRIAL PARK PLOT A4 TP52	3.0	N	<u>157617</u> ↗
I	244m NW	330790 371980	DEESIDE INDUSTRIAL PARK PLOT A4 TP59	3.0	N	<u>157621</u> ⊅

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m 1

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).


Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 123 >

Location	Hazard rating	Details
On site	Very low	Ground conditions predominantly low plasticity.

Natural ground subsidence - Running sands

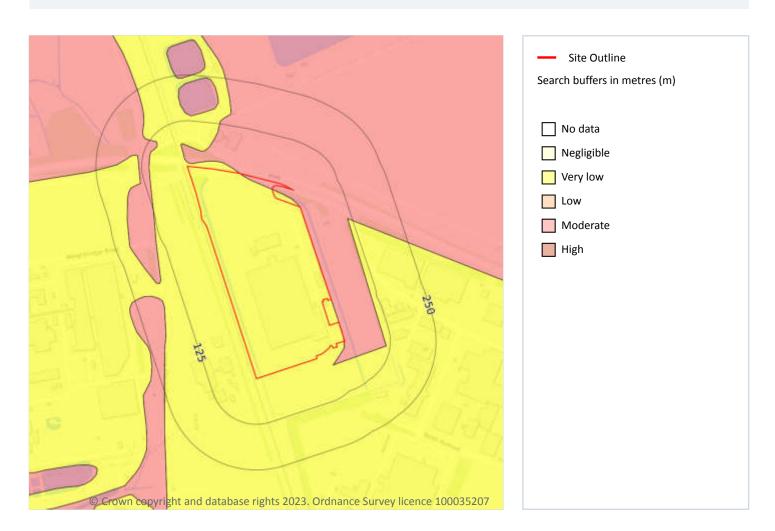
17.2 Running sands

Records within 50m 2

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 124 >

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.


Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location	Hazard rating	Details
On site	Moderate	Running sand conditions are probably present. Constraints may apply to land uses involving excavation or the addition or removal of water.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m 2

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 126 >

Location	Hazard rating	Details
On site	Very low	Compressibility and uneven settlement problems are not likely to be significant on the site for most land uses.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Loca	tion	Hazard rating	Details
On si	te	Moderate	Compressibility and uneven settlement hazards are probably present. Land use should consider specifically the compressibility and variability of the site.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m 1

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 128 >

Location	Hazard rating	Details
On site	Negligible	Deposits with potential to collapse when loaded and saturated are believed not to be present.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m 4

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 129 >

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location	Hazard rating	Details
On site	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.
13m NW	Moderate	Slope instability problems are probably present or have occurred in the past. Land use should consider specifically the stability of the site.
39m N	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.

Natural ground subsidence - Ground dissolution of soluble rocks

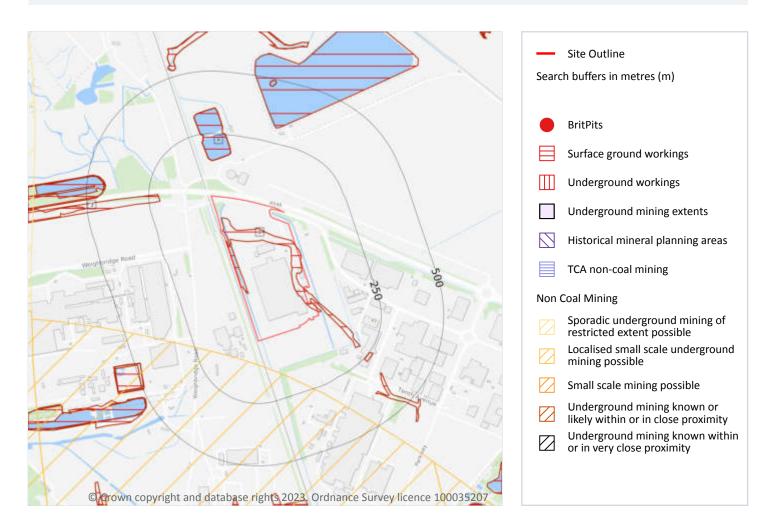
17.6 Ground dissolution of soluble rocks

Records within 50m 1

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page
131 >

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.


This data is sourced from the British Geological Survey.

Great Bear, Weighbridge Road, Deeside Industrial Park, Deeside, CH5 2LL Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

18 Mining and ground workings

18.1 BritPits

Records within 500m 0

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

This data is sourced from the British Geological Survey.

Date: 15 June 2023

18.2 Surface ground workings

Records within 250m 6

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining and ground workings map on page 133 >

ID	Location	Land Use	Year of mapping	Mapping scale
1	On site	Water Body	1938	1:10560
А	141m NW	Ponds	1992	1:10000
А	141m NW	Ponds	1981	1:10000
А	141m NW	Ponds	1960	1:10560
А	141m NW	Ponds	1969	1:10560
3	206m NW	Unspecified Pit	1992	1:10000

This is data is sourced from Ordnance Survey/Groundsure.

18.3 Underground workings

Records within 1000m 2

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

Features are displayed on the Mining and ground workings map on page 133 >

ID	Location	Land Use	Year of mapping	Mapping scale
-	893m SW	Unspecified Workings	1960	1:10560
_	893m SW	Unspecified Workings	1969	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground mining extents

Records within 500m 0

This data identifies underground mine workings that could present a potential risk, including adits and seam workings. These features have been identified from BGS Geological mapping and mine plans sourced from the BGS and various collections and sources.

This data is sourced from Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m 0

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m 4

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

Features are displayed on the Mining and ground workings map on page 133 >

ID	Location	Name	Commodity	Class	Likelihood
2	91m S	Not available	Iron Ore (Bedded)	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
10	711m W	Not available	Vein Mineral	Α	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
11	746m SE	Not available	Iron Ore (Bedded)	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
12	823m W	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

18.7 JPB mining areas

Records on site 0

Areas which could be affected by former coal and other mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.8 The Coal Authority non-coal mining

Records within 500m 0

This data provides an indication of the potential zone of influence of recorded underground non-coal mining workings. Any and all analysis and interpretation of Coal Authority Data in this report is made by Groundsure, and is in no way supported, endorsed or authorised by the Coal Authority. The use of the data is restricted to the terms and provisions contained in this report. Data reproduced in this report may be the copyright of the Coal Authority and permission should be sought from Groundsure prior to any re-use.

This data is sourced from The Coal Authority.

18.9 Researched mining

Records within 500m 0

This data indicates areas of potential mining identified from alternative or archival sources, including; BGS Geological paper maps, Lidar data, aerial photographs (from World War II onwards), archaeological data services, websites, Tithe maps, and various text/plans from collected books and reports. Some of this data is approximate and Groundsure have interpreted the resultant risk area and, where possible, specific areas of risk have been captured.

This data is sourced from Groundsure.

18.10 Mining record office plans

Records within 500m 0

This dataset is representative of Mining Record Office and/or plan extents held by Groundsure and should be considered approximate. Where possible, plans have been located and any specific areas of risk they depict have been captured.

This data is sourced from Groundsure.

Date: 15 June 2023

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

18.11 BGS mine plans

Records within 500m 0

This dataset is representative of BGS mine plans held by Groundsure and should be considered approximate. Where possible, plans have been located and any specific areas of risk they depict have been captured.

This data is sourced from Groundsure.

18.12 Coal mining

Records on site 0

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.13 Brine areas

Records on site 0

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.14 Gypsum areas

Records on site 0

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.15 Tin mining

Records on site 0

Generalised areas that may be affected by historical tin mining.

This data is sourced from Groundsure.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

18.16 Clay mining

Records on site 0

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).

19 Ground cavities and sinkholes

19.1 Natural cavities

Records within 500m 0

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

19.2 Mining cavities

Records within 1000m 0

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

19.3 Reported recent incidents

Records within 500m

This data identifies sinkhole information gathered from media reports and Groundsure's own records. This data goes back to 2014 and includes relative accuracy ratings for each event and links to the original data sources. The data is updated on a regular basis and should not be considered a comprehensive catalogue of all sinkhole events. The absence of data in this database does not mean a sinkhole definitely has not occurred during this time.

This data is sourced from Groundsure.

19.4 Historical incidents

Records within 500m 0

This dataset comprises an extract of 1:10,560, 1:10,000, 1:2,500 and 1:1,250 scale historical Ordnance Survey maps held by Groundsure, dating back to the 1840s. It shows shakeholes, deneholes and other 'holes' as noted on these maps. Dene holes are medieval chalk extraction pits, usually comprising a narrow shaft with a number of chambers at the base of the shaft. Shakeholes are an alternative name for suffusion sinkholes, most commonly found in the limestone landscapes of North Yorkshire but also extensively noted around the Brecon Beacons National Park.

Not all 'holes' noted on Ordnance Survey mapping will necessarily be present within this dataset.

Date: 15 June 2023

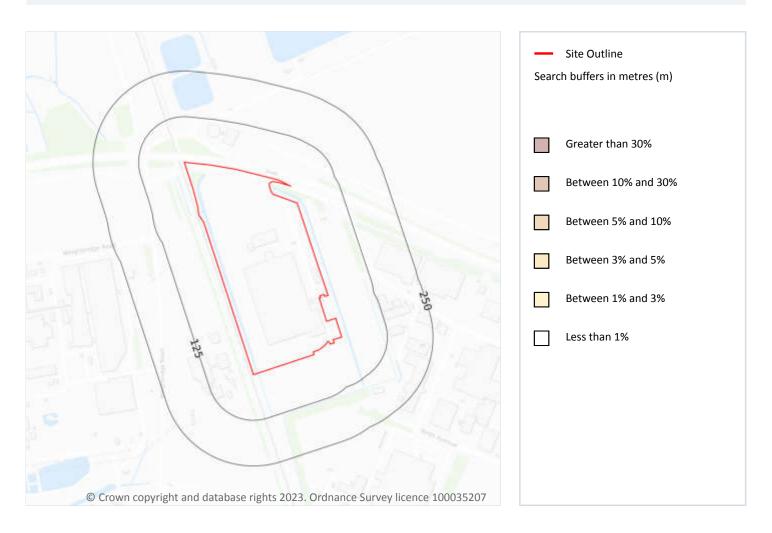
Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from Groundsure.

19.5 National karst database

Records within 500m 0

This is a comprehensive database of national karst information gathered from a wide range of sources. BGS have collected data on five main types of karst feature: Sinkholes, stream links, caves, springs, and incidences of associated damage to buildings, roads, bridges and other engineered works.


Since the database was set up in 2002 data covering most of the evaporite karst areas of the UK have now been added, along with data covering about 60% of the Chalk, and 35% of the Carboniferous Limestone outcrops. Many of the classic upland karst areas have yet to be included. Recorded so far are: Over 800 caves, 1300 stream sinks, 5600 springs, 10,000 sinkholes.

The database is not yet complete, and not all records have been verified. The absence of data does not mean that karst features are not present at a site. A reliability rating is included with each record.

20 Radon

20.1 Radon

Records on site 1

The Radon Potential data classifies areas based on their likelihood of a property having a radon level at or above the Action Level in Great Britain. The dataset is intended for use at 1:50,000 scale and was derived from both geological assessments and indoor radon measurements (more than 560,000 records). A minimum 50m buffer should be considered when searching the maps, as the smallest detectable feature at this scale is 50m. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain (1:100,000 scale).

Features are displayed on the Radon map on page 141 >

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from the British Geological Survey and UK Health Security Agency.

Date: 15 June 2023

21 Soil chemistry

21.1 BGS Estimated Background Soil Chemistry

Records within 50m 8

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	20 - 40 mg/kg	15 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	20 - 40 mg/kg	15 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	20 - 40 mg/kg	15 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	20 - 40 mg/kg	15 mg/kg
On site	15 mg/kg 15 mg/kg	No data	100 mg/kg 100 mg/kg	60 mg/kg	1.8 mg/kg 1.8 mg/kg	20 - 40 mg/kg 20 - 40 mg/kg	15 mg/kg 15 mg/kg
20m NW	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	20 - 40 mg/kg	15 mg/kg

This data is sourced from the British Geological Survey.

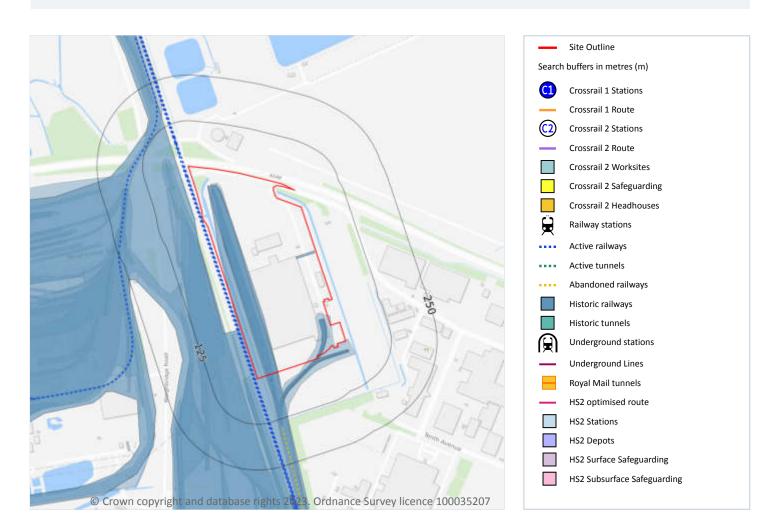
21.2 BGS Estimated Urban Soil Chemistry

Records within 50m 0

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

21.3 BGS Measured Urban Soil Chemistry


Records within 50m 0

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

22 Railway infrastructure and projects

22.1 Underground railways (London)

Records within 250m 0

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

22.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

This data is sourced from publicly available information by Groundsure.

22.3 Railway tunnels

Records within 250m 0

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

22.4 Historical railway and tunnel features

Records within 250m 24

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

Features are displayed on the Railway infrastructure and projects map on page 145 >

Location	Land Use	Year of mapping	Mapping scale
On site	Railway Sidings	1994	2500
On site	Railway Sidings	1963	2500
On site	Railway Sidings	1983	2500
On site	Railway Sidings	1991	2500
On site	Railway Sidings	1984	2500
On site	Railway Sidings	1992	2500
On site	Railway Sidings	1997	2500
On site	Railway Sidings	1981	10000
On site	Railway Sidings	1960	10560
On site	Railway Sidings	1969	10560
On site On site	Railway Sidings	1969 1992	10000
On site	Railway Sidings	1992	10000
On site 25m SW	Railway Sidings Railway Sidings	1992 1963	10000 2500
On site 25m SW 31m S	Railway Sidings Railway Sidings Railway Sidings	1992 1963 1978	10000 2500 2500
On site 25m SW 31m S 42m S	Railway Sidings Railway Sidings Railway Sidings Railway Sidings	1992 1963 1978 1978	10000 2500 2500
On site 25m SW 31m S 42m S 43m S	Railway Sidings Railway Sidings Railway Sidings Railway Sidings Railway Sidings	1992 1963 1978 1978 1963	10000 2500 2500 2500 2500

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Location	Land Use	Year of mapping	Mapping scale
176m NW	Railway Sidings	1963	2500
178m NW	Railway Sidings	1983	2500
179m NW	Railway Sidings	1991	2500
198m NW	Railway Sidings	1963	2500
217m SW	Railway Sidings	1978	2500
233m W	Railway Sidings	1978	2500
233m NW	Railway Sidings	1963	2500

This data is sourced from Ordnance Survey/Groundsure.

22.5 Royal Mail tunnels

Records within 250m 0

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

This data is sourced from Groundsure/the Postal Museum.

22.6 Historical railways

Records within 250m 1

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines.

Features are displayed on the Railway infrastructure and projects map on page 145 >

Location	Description
152m S	Disused

 ${\it This\ data\ is\ sourced\ from\ OpenStreetMap}.$

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

22.7 Railways

Records within 250m 17

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. Features are displayed on the Railway infrastructure and projects map on page-145 >

Location	Name	Туре
3m NW		rail
4m NW	Not given	Multi Track
5m NW	Not given	Multi Track
7m NW		rail
10m NW		rail
14m S	Not given	Single Track
15m NW		rail
37m NW	Not given	Multi Track
72m NW		rail
72m NW		rail
88m NW		rail
89m NW		rail
129m NW	Shotwick Paper Company's Sidings	rail
129m NW	Shotwick Paper Company's Sidings	rail
131m NW	Shotwick Paper Company's Sidings	rail
209m S	Not given	Multi Track
247m W	Shotwick Paper Company's Sidings - Disconnected	rail

This data is sourced from Ordnance Survey and OpenStreetMap.

22.8 Crossrail 1

Records within 500m 0

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

0

22.9 Crossrail 2

Records within 500m 0

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

22.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

Ref: EMS-874130_1118694 Your ref: EMS_874130_1081435 Grid ref: 331237 371779

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see https://www.groundsure.com/sources-reference.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: $\underline{\text{https://www.groundsure.com/terms-and-conditions-april-2023/}}$.

Date: 15 June 2023

UK Locations

Ash Vale Birmingham London Wakefield

Phase II Site Appraisal

10579 – Great Bear, Link 56 Deeside

for

Legat OwenGBD-PPC-00-XX-RP-G-0002

July 2023

Phase II Site Appraisal

10579 - Great Bear, Link 56

for

Legat Owen

Revision	Date of issue	Comments	Prepared By	Checked By
0	31.07.23	1 st Issue	OMD	НА

Should you have any queries relating to this document please contact:

Chris Storey
PPCP Limited T/A Patrick Parsons
St Paul's Place
40 St Paul's Square
Birmingham
B3 1FQ

T: +44 (0) 121 592 0000

E: chris.storey@patrickparsons.co.uk

	Summary of Recommendations
	for Great Bear, Deeside
Risk to End-Users	No risk to end-users identified.
Risk to Controlled Waters	No risk to controlled waters identified.
Ground Gases	No significant sources identified the site is classified as Characteristic Situation 1 and no gas protection measures required. Subject to completed ground gas monitoring programme and final gas risk assessment.
Concrete Specification	GEN1 or RC25/30 concrete will be sufficient for buried concrete at the site.
Water Pipe Specification	PVC not PE pipes will be suitable (to be confirmed by utility provider).
Engineering Ground Treatment	N/A
Likely Foundation Types	Pad foundations will be suitable for the proposed commercial development.
Likely Foundation Depths	Min. 1.50m begl to provide an allowable bearing pressure of 150 kN/m². Foundations should be carried through any Made Ground, soft or loose natural deposits. The western foundations should be taken to a depth where the pressure bulb is not interacting with the adjacent slope and off-site drain.
Bearing Strata	Medium dense granular natural superficial soils.
Allowable Bearing Pressure	An allowable bearing pressure of 150 kN/m² within the underlying medium dense granular superficial soils for the proposed building.
Volume Change Potential	N/A site is underlain by granular soils.
Tree Influence	N/A site is underlain by granular soils.
Floor Slabs	Ground bearing floor slabs are potentially suitable subject to the requirement for gas protection measures.
Slope Stability Risk	A slope stability assessment may be required on the adjacent off-site slope to the west of the site. Any slope stability assessment should be undertaken by a suitably qualified engineer.
Retaining Walls	Small retaining structures may be required along the western boundary of the site. Any retaining structures should be designed by a suitably qualified engineer.
SUDs	Soakaway drainage strategy may be viable for the proposed development due to extensive thicknesses of natural granular soils across the site. However, the presence of shallow groundwater and leachable contaminants will preclude the use of soakaway drainage for the proposed development.
Roads	A design CBR value of between >10% should be used for design (subject to in-situ testing).
Likely Waste Classification	Soils will require disposal as non-hazardous waste to an inert landfill subject to confirmation from the receiving waste site.
Other Comments	None

The above summary should not be used in isolation and reference should be made the full report which provides a detailed assessment of the risks affecting the development.

Contents

1.0	Introduction	
2.0	Summary of Phase I Site Appraisal	2
3.0	Phase I Conceptual Model	4
4.0	Phase II Ground Investigation	6
5.0	Human Health Risk Assessment (Ground Gas)	8
6.0	Human Health Risk Assessment (Soil)	9
7.0	Controlled Waters Risk Assessment	10
8.0	Construction Materials Risk Assessment	12
9.0	Phase II Conceptual Model	13
10.0	Remediation and Validation	15
11.0	Geotechnical Appraisal	18
12 0	Further Investigation	20

Appendix A Figures

Appendix B Exploratory Hole Location Plan and Logs

Appendix C Laboratory Test Results

Appendix D Online Hazwaste Assessment

Appendix F Patrick Parsons Generic Assessment Criteria (GAC)

1.0 Introduction

1.1 Commission

Patrick Parsons (PP) have been appointed by Legat Owen (client) to produce a Phase II Site Appraisal for their site know as 'Great Bear, Deeside' herein referred to as 'the site'.

1.2 Proposed Development

It is understood that the site is to be developed to provide a 172,000sq ft commercial distribution building with associated yard and car park areas. A plan showing the general layout of the proposed development is in Appendix A.

1.3 Limitations

This report has been prepared for the client and their appointed agents only and should not be relied upon by any third party without the written permission of PP. If any unauthorised third party comes into possession of this report, they rely on it at their own risk and the authors do not owe them any Duty of Care or Skill. It is based on and limited to an assessment of the information and ground conditions identified here. PP is not responsible for ground conditions located between exploratory hole locations and not revealed during investigations.

1.4 Aim of Phase II Site Appraisal

The client's specific requirements were to undertake a Phase II Site Appraisal. The principal objectives are as follows:

- Obtain information about the soil and groundwater conditions within the area of the site;
- Determine the ground related geotechnical and contamination hazards within the site boundaries that may affect the proposed development;
- Define the Phase I conceptual site model and refine to form a Phase II conceptual site model;
- Provide development recommendations and provide advice on further works if required.

1.5 Information Sources

This Phase II Site Appraisal is based on the findings of the investigation, chemical analysis and geotechnical testing undertaken during the assessment. The results have been used to refine the conceptual model and initial recommendations outlined in the Phase I Site Appraisal report undertaken by PP (ref: GBD-PPC-00-XX-RP-G-0001, dated May 2023). The information included within this report helped to form the rationale for the design of this investigation.

2.0 Summary of Phase I Site Appraisal

The following is a summary of the findings of the Phase I Site Appraisal Report undertaken by PP in July 2023 and should not be read in isolation. For full details reference should be made to the report outlined in section 1.5.

- The site is a roughly rectangular shaped parcel of land covering 13.62ha that is bound by Weighbridge Road to the north and Deeside Industrial Park on the southern, western and eastern boundaries. The site is located approximately 10.6km north-west of Chester town centre located at OS grid reference 331237, 371779 and the nearest postcode is CH5 2LL;
- The site is occupied by two large rectangular shaped commercial / industrial units one occupying the southern half of the site, and the other located centrally. Large portions of the site are laid to tarmac or concrete hardstanding which are used as loading and parking areas for commercial vehicles. Undeveloped land occupies the northern third of the site, which is currently used as staff parking and storage. The site is predominantly a level gradient, however an off-site drain run along the western boundary of the site is noted, this drainage run is approximately 3.20m below the existing site level;
- The site has comprised an undeveloped marshland from 1869 up to the 1960s where commercial industrial development has been recorded. Slight infill development has occurred in the subsequent mapping;
- The site has been classified as low risk of UXO. As such no further mitigation measures are required;
- The site has been recorded to be covered by artificial deposits / Made Ground. As such, Made Ground should be expected across the site. The site is recorded to be underlain by Superficial Deposits of Tidal Flat Deposits overlying the bedrock geology of the Kinnerton Sandstone Formation;
- There are 6no. surface ground workings recorded within 250m of the site, the closest being a water body recorded on site in 1938. The remaining surface ground workings comprise ponds and an unspecified pit ranging between 141m northwest and 206m northwest from the site;
- There are 2no. records of underground workings within 1000m of the site, both are unspecified workings 893m southwest in 1960 and 1969;
- The site is not recorded within a Radon Affected Area and as such radon protection measures are not required for new properties on the site;
- The Superficial Deposits beneath the site are recorded to be a Secondary Undifferentiated Aquifer. The bedrock beneath the site is recorded to be a Principal Aquifer. The site is not located within a Source Protection Zone.
- There are 7no. records of groundwater abstractions within 2000m of the site, the closest being a historical record relating to pollution remediation 475m east of the site.
- There is 1no. recorded surface water abstraction within 2000m of the site. This record is 444m north of the site and is associated with spray irrigation.
- The are 11no. surface water features within 250m of the site, 5no. located on site relating to an inland river not influenced by normal tidal action.
- The eastern side of the site is recorded to be in a Flood Zone 2 and part of the northern boundary is recorded to be in a Flood Zone 3.
- There are no recorded LA historical landfill or EA/NRW landfill sites within 500m of the site. There are 2no. of historical waste record within 500m of the site. One is located on site relating to a recycling/recovery plant for municipal solid waste.

- There are 57no. waste exemption records within 500m of the site. There are 21no. of
 waste exemption records located on site, relating to burning waste in the open,
 treatment of waste wood and waste plant, storage of waste, deposit of agricultural
 waste, spreading waste on agricultural land and others.
- There are 24no. records of historical tanks within 500m of the site. There are 3no. of records of historical tanks recorded on site relating to unspecified tanks ranging from 1984 to 1997.
- There are 25no. records of recent or current industrial land use within 250m of the site.
 There are 6no. records on site relating to industrial coatings and finishings, new vehicles, catering and non-specific food products, office and shop equipment, industrial engineers and electrical features.
- There are 2no. licensed pollutant release (Part A(2)/B) records within 500m of the site. One record on site relates to respraying of road vehicles, whilst the other relates to engineering works located 393m SE.

3.0 Phase I Conceptual Model

3.1 Initial Conceptual Site Model and Preliminary Risk Assessment

The preceding desk study data and supplementary site investigation data has been assessed and a conceptual model produced in accordance with Land Contamination Risk Management (LCRM) guidance document. LCRM provides a technical framework for identifying and remediating contamination through the application of a risk management process. The CSM provides the relationship between the following three criteria:

- The presence of substances that may cause harm (source);
- The presence of a plausible pollutant linkage between the source and receptor (pathway);
- The presence of a receptor which may be harmed (receptor).

If all three criteria are present, or considered likely to be present at a site, they are identified as Potential Contaminant Linkages (PCLs). EA R&D66 (2008) includes a risk classification system based on classification of consequence and probability, as shown in the table below, associated with the identified PCLs.

			Severity of	Consequence	
		Severe	Medium	Mild	Minor
ollutant	High Likelihood	Very High risk	High risk	Moderate risk	Moderate/ Low risk
0.0	Likely	High risk	Moderate risk	Moderate / Low risk	Low risk
	Low Likelihood	Moderate risk	Moderate / Low risk	Low risk	Very Low risk
Probability lin	Unlikely	Moderate / Low risk	Low risk	Very Low risk	Very Low risk

The definitions of the risk terminology are taken from CIRIA report C552.

A pollutant linkage must be established before tests for probability and consequence are applied. If there is no pollutant linkage, then there is no potential risk and there is no need to apply tests for probability and consequence. The risk assessment needs to include a logical and transparent system to define categories of severity of consequence and probability of occurrence.

3.2 Preliminary Conceptual Site Model

A preliminary qualitative assessment of the identified PCLs and associated risk ratings was completed, and a summary is provided in the Table on the next page.

Source	Pathway	Receptor	Consequ	Probability	Risk Assessment and Justification
On-site sources –	Dermal contact, inhalation and ingestion of	Future site user/worker	Medium	Low Likelihood	Low/Moderate Risk – Made Ground expected to be present on-site. However, the proposed development of the site includes limited areas of soft landscaping which will be managed by the building management limiting the pathway between any potential contamination and end users.
Made Ground on site associated with	contaminants in soil and soil derived dust	Site construction worker	Mild	Low Likelihood	Low Risk - Construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.
the industrial and commercial developments and industrial activity	Inhalation of volatile	Future site user/worker		Low Likelihood	Low/Moderate Risk – Expected deposits of Made Ground identified on site. Considered a low likelihood that the levels of volatile vapours and ground gases will be high enough to represent acute risks or lead to significant impact due to the cohesive nature of the Tidal Flat Deposits beneath the site.
on site; general contaminants to include heavy metals, PAHs, TPHs and VOC/SVOCs.	soil vapours and ground gas	Site construction worker	Medium	Unlikely	Low Risk – On-site deposits of Made Ground typically comprising reworked natural soils. Considered unlikely that levels of volatile vapours and ground gases will be high enough to represent acute risks or lead to significant impact. However, construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.
Asbestos containing materials (ACM) from fly tipping of ACMs cannot be	Inhalation of asbestos free fibres	Site user/worker	Severe	Low Likelihood	Moderate Risk —Asbestos is unlikely to be on-site due to the sites historical use. Asbestos including asbestos containing materials (ACMs) may also have been fly tipped or introduced on-site by windblown processes. However, the proposed development of the site includes very limited areas of soft landscaping which will be managed by the building management limiting the pathway between any potential contamination and end users.
discounted.		Site construction worker		Low Likelihood	Moderate Risk - Construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.
Offsite sources – Made Ground surrounding the site relating to off- site commercial /	Leaching of contaminants from	Groundwater within superficial deposits (Secondary Undifferentiated Aquifer)	Mild	Likely	Low/Moderate Risk: Risk assessed as Low / moderate due to the low sensitivity of the shallow groundwater due to the site location within a predominantly commercial / industrial site setting where potable extractions are unlikely to be utilised in future.
industrial developments and infilled ponds.	soil and vertical migration into groundwater	Surface Water Drain	Mild	Likely	Low/Moderate Risk: Risk assessed as Low / moderate due to the low sensitivity of the shallow groundwater due to the site location within a predominantly commercial / industrial site setting where surface water extractions are unlikely to be utilised in the future.
General contaminants to include heavy		Groundwater within bedrock (Principal Aquifer)	Medium	Low Likelihood	Low/Moderate Risk: Risk assessed as Low / moderate as contamination will likely be intercepted and attenuated by the shallow groundwater within the superficial deposits.
metals, PAHs, TPHs and asbestos.	Permeation through water pipes of shallow contamination.	Future site user/worker	Mild	Low Likelihood	Low Risk : Sources of contamination may be present on site however it is considered unlikely that UKWIR threshold values would be exceeded.

10579 – Great Bear, Link 56

4.0 Phase II Ground Investigation

4.1 Fieldwork

The ground investigation (including fieldwork, sampling and laboratory analysis) has been designed to identify and assess potential ground related problems and to allow cost-effective solutions to be advised. It has been planned based on the desk study. All fieldwork and soil descriptions were carried out in general accordance with relevant British Standards.

The exploratory holes have been positioned to determine the general ground/groundwater conditions below the site, with representative samples obtained for geotechnical and environmental laboratory analysis. The resultant exploratory hole density is considered to be appropriate with the complexity of the site conditions revealed in the desk study and detail of information required for this phase of the investigation.

The ground investigation was undertaken between 26 June and 28 June 2023 and comprised a total of 18no. window sample boreholes to a maximum depth of 5.00m begl (WS01-18).

The exploratory hole location plan and exploratory hole logs are presented in Appendix B.

4.2 Ground Conditions

Topsoil was encountered from surface in three exploratory hole locations along the eastern boundary of the site (WS15 to WS17) to depths of 0.20m begl and generally comprised dark brown slightly gravelly slightly clayey sand. The gravel was subangular to subrounded fine to coarse quartzite and flint.

The Topsoil was underlain by variable Made Ground comprising pale yellowish-brown slightly gravelly fine to coarse sand with a moderate cobble content to a depth of 1.00m begl (WS15) or greyish-brown slightly gravelly sand to a depth of 0.50m begl (WS16) or black slightly gravelly slightly clayey fine to coarse sand to a depth of 0.70m begl (WS17). The gravel was subangular to subrounded fine to coarse quartzite, flint, concrete and brick. Cobbles are bricks.

Made Ground was encountered from surface in exploratory hole locations WS01 to WS15 which varied laterally from:

WS01 and WS02 which encountered concrete to from surface to depths of 0.32m begl.

WS03 to WS13 which are in the north and north-west of the site and from surface comprised grey sandy gravel a depth of between 0.10m and 0.30m begl. The gravel content was subangular to subrounded fine to coarse quartzite concrete and occasional asphalt and brick. In WS14 Made Ground of pale yellowish-brown fine to coarse sand was encountered from surface to 0.30m begl. In WS18 from surface comprised grey slightly sandy gravel to 0.20m begl. The gravel was subangular to subrounded fine to coarse quartzite.

Below the surface Made Ground or topsoil, further Made Ground comprising greyish-brown sandy gravel or greyish-brown gravelly fine to coarse sand was encountered to depths of between 0.10m and 0.70m begl. The gravel content was subangular to subrounded fine to coarse quartzite, concrete, asphalt and brick.

Below the Made Ground, natural soils of the Tidal Flat Deposits were encountered to depths of between 0.20m and 5.00m begl and generally comprised loose to medium dense pale yellowish-brown fine to coarse sand or medium dense pale yellowish-brown slightly gravelly fine to coarse sand with a moderate cobble content. The gravel was subangular to subrounded fine to coarse quartzite and flint. The cobbles were subangular to subrounded quartzite and flint.

These soils were underlain by loose to medium dense black to greyish-black to blackish-grey and brown slightly silty occasionally slightly clayey fine to coarse sand was encountered in WS02, WS05, WS07, WS09, WS10, WS17 between 2.90m and 5.00m begl.

Corrected SPT N-60 values within the Tidal Flat Deposits were between 10.7 and 38.4 at 1.00m, between 9.6 and 53.3 at 2.00m begl, between 3.2 and 22.4 at 3.00m, between 4.3 and 20.30 at 4.00m begl and between 26.7 and 43.7 at 5.00m begl.

4.3 Groundwater

Shallow groundwater ingress was encountered in all exploratory hole locations that surpassed 3.00m begl during the investigation (WS02, WS05 to WS10, WS13, WS14, WS17). Shallower groundwater has been recorded within all the monitoring wells during the first two monitoring visits with groundwater levels recorded between 2.58m begl (WS02) and 2.90m begl (WS13).

4.4 Contamination Observations

No visual or olfactory evidence of potential significant contamination was identified during the ground investigation.

4.5 Chemical Analysis

Chemical laboratory analyses were selected to provide the parameters necessary to assess the suitability for the re-use of soils on the site as well as to inform risk assessment for end users and controlled waters. The choice of contamination testing was based on the commonly occurring potential contaminants as identified within the Phase I Site Appraisal and on-site visual observations of contaminated soils. The chemical analysis results are presented in Appendix C. In summary the following testing has been completed:

- 10no. samples for a general suite of contaminants -heavy metals, inorganics, speciated polyaromatic hydrocarbons and asbestos.
- 3no. samples for Speciated VOCs and SVOCs
- 4no. samples for leachates
- 3no. samples for total organic carbon content.

4.6 Geotechnical Testing

Geotechnical soils testing has been undertaken as part of the ground investigation to provide the parameters necessary for the budgetary design of the development. The geotechnical test results are presented in Appendix C. In summary the following testing has been completed:

- 4no. for pH and Water-Soluble Sulphate;
- 2no. for Atterberg Limit tests;
- 6no. for Remoulded Laboratory California Bearing Ratio Tests (2.5kg rammer).

5.0 Human Health Risk Assessment (Ground Gas)

Gas/groundwater monitoring standpipes have been installed in four of the window sample exploratory holes across the site (WS02, WS09, WS13 and WS17). Response zones were targeted in natural soils.

As the site is proposed for commercial end-use, the monitoring programme is scheduled to comprise four visits over a minimum three-month period using a GA5000 Multi-Function Gas Analyser.

The results of the ground gas monitoring programme were assessed using the classification system contained within BS 8485:2015+A1:2019 and CIRIA C665. The classification system uses gas concentrations and recorded flow rates for CH4 and CO2 to determine a borehole hazardous gas flow rate (Qhg). Qhg is used to assign a Characteristic Situation (CS) for each borehole, based on Table 2 in BS 8485:2015+A1:2019 and the Qhg. has been calculated using the equation below:

$$Q_{hg} = q \left(\frac{C_{hg}}{100} \right)$$

where:

q is the measured flow rate of combined gases from the monitoring standpipe (I/hr)

Chg is the measured hazardous gas concentration (% v/v)

The recorded concentrations of ground gas and flow rate are summarised in the table below:

Borehole	Max Steady Flow	Max. CH4 (% v/v)	Max. CO2 (% v/v)	CH4 Qhg (I/hr)	CO2 Qhg (I/hr)	cs
WS02	0.1	0.30	0.80	0.0003	0.0008	1
WS09	0.1	0.50	0.20	0.0005	0.0002	1
WS13	0.1	0.30	0.60	0.0003	0.0006	1
WS17	0.1	0.30	1.90	0.0003	0.0019	1

The monitoring programme has recorded a maximum carbon dioxide concentration of 1.90% v/v, a maximum methane concentration of 0.5% v/v and a minimum oxygen concentration of 17.5% v/v. No hydrogen sulphide has been recorded. Carbon monoxide was recorded on the first monitoring visit (WS09) with a peak of 2ppm and steady 1ppm. A maximum steady flow of 0.11/hr has been recorded.

A plausible worst case Qhg has also been calculated for carbon dioxide (0.0019 l/hr) and methane (0.0005 l/hr) using the maximum steady flow rate of 0.1 l/hr. The 'worst case' Qhg for both carbon dioxide and methane would classify the site as Characteristic Situation 1 (CS1) in accordance with BS8485:2019 and on this basis gas precaution measures are unlikely to be required for the proposed development.

Radon protection measures are not required at the site.

The gas monitoring results to date are included in Appendix E.

6.0 Human Health Risk Assessment (Soil)

6.1 Introduction

It is understood that the site is to be developed to provide a commercial distribution building with associated yard area. The Phase II investigation have revealed up to 0.90m of Made Ground (WS14). However, no other significant visual or olfactory signs of contamination were noted.

Representative samples of topsoil, Made Ground and natural strata encountered were collected for further examination and/or potential testing.

The Generic Assessment Criteria (GAC) used by Patrick Parsons are presented in Appendix F. For this site, the chemical analysis results are being compared against the GAC for commercial end-use with a soil organic matter (SOM) content of 1%, this is considered the most appropriate GAC based on the total organic carbon (TOC) recorded within the analysis.

6.2 Risk to End-Users

The chemical analyses of the topsoil, Made Ground and natural soils have recorded no exceedances of any contaminants of concern when compared to the GAC for commercial enduse.

All 13no. samples were tested for the presence of asbestos; asbestos was not encountered in any of the samples.

Based on the results of the chemical analysis, the soils do not pose a risk to end-users and as such the topsoil, Made Ground and natural soils can be reused at the site.

6.3 Risk to Construction Workers

During any future construction works that take place on site, risks associated with contaminated soils must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015. Potential acute risks resulting from short term exposure to contamination by construction / maintenance workers involved with the proposed development and future intrusive maintenance works (i.e. repairing services) cannot be assessed using the aforementioned GAC because they relate to the long-term (chronic) risk.

In accordance with CDM, potential risks to human health and the environment from construction activities shall be appropriately identified and all necessary steps taken to eliminate/manage that risk with the use of appropriate risk assessments and safe systems of work. It has been assumed that any future construction works on-site will be undertaken in compliance with these requirements and therefore construction workers involved in any future development at the site and intrusive maintenance workers (e.g., for repair of underground services) have been discounted as a human receptor in this report.

However, it is recommended that the laboratory test results are included in the consideration of site-specific risk assessment for the ground workers that will be exposed to the soils beneath the site.

7.0 Controlled Waters Risk Assessment

7.1 Risk Assessment

The chemical testing and ground investigation has not identified any grossly contaminated soils.

Four soil leachate samples have been analysed as part of this assessment, and the results have been screened against the Environmental Quality Standards (EQS) to assess risks to surface water. Recorded exceedances of EQS are outlined in the table below. No polyaromatic hydrocarbons were detected.

Environmenta	l Quality Standards a	nd Drinking Water Sta	andards Exceedances
Location	Determinand	EQS (μg/l)	Exceedance (µg/l)
WS05 at 0.60m			13
WS09 at 0.25m	6	4 *	15
WS14 at 0.40m	Copper	1*	17
WS16 at 0.10m			21
WS05 at 0.60m			14
WS09 at 0.25m	Lead	1.2*	4.7
WS14 at 0.40m			3
WS05 at 0.60m	7:	40.0*	24
WS09 at 0.25m	Zinc	10.9*	19
*EQS _{bioavailable} - derived to refle	ect concentrations of	concern in conditions	of high bioavailability

It should be noted that soil leachate tests can be overly aggressive given that the test is carried out under onerous conditions, and as such the results may overestimate the amount of leachate derived from a soil, giving values that are not representative of actual hydro chemical conditions.

The bedrock geology of the Kinnerton Sandstone Formation is recorded to be a Principal Aquifer. The Superficial Tidal Flat Deposits beneath the site are recorded to be a Secondary Undifferentiated Aquifer. The site is not recorded to be within any Source Protection Zone.

Groundwater ingress was encountered during the investigation all holes that surpassed 3.00m begl at depths of 3.00m begl. Shallower groundwater has been recorded within all the monitoring wells during the first two monitoring visits with groundwater levels recorded between 2.58m begl (WS02) and 2.90m begl (WS13).

The proposed layout shows the site will be covered predominantly by either impermeable hardstanding or the building footprint coupled with the presence of granular soils beneath the site and shallow groundwater limiting the vertical migration of contamination, attenuation and dilution of any contaminants will reduce the contamination risk of the bedrock Principal Aquifer beneath the site. Additionally, the bedrock geology will be of a significant depth and consequently it is considered unlikely that contamination would migrate vertically to impact the deeper aquifer, with site sourced contamination likely to be "intercepted" by the shallow groundwater body in the Made Ground and superficial deposits. On this basis, the risk to groundwater in the Principal Aquifer is considered to be low and no further assessment or remedial action are considered necessary in relation to this receptor.

In addition, the site is situated in an industrialised area therefore unlikely to have a potable water abstraction in close proximity reducing the risk to the Secondary Undifferentiated Aquifer within the Superficial Deposits.

As such, the primary controlled waters pollutant linkage that requires further assessment is the migration of contamination through shallow groundwater and potentially causing impact to the surface water features in close proximity to the site.

Surface Water Risk

The EQS values for copper, lead and zinc represent screening values for comparison against the fraction of each metal that is bioavailable as this is the fraction responsible for toxic effects in flora and fauna. The measured leachate concentrations of copper, lead and zinc represent total concentrations and as such the number and / or magnitude of exceedances would be lower when considering only the bioavailable fraction of each metal.

With respect to surface waters, there are 11no. surface water features within 250m of the site, 5no. located on site relating to an inland river not influenced by normal tidal action.

However, the proposed development will be predominantly laid to hardstanding limiting the infiltration through the underlying Made Ground and natural soils. Additionally, new drainage systems will be constructed associated with the new development limiting the levels of surface run-off to off-site surface water features.

As such it is considered the risk to controlled waters is considered to be low and no specific remediation is considered to be required for the proposed development.

8.0 Construction Materials Risk Assessment

8.1 Water Supply Pipes

The chemical analysis results have been compared against UK Water Industry Research (UKWIR) Contamination Thresholds for sub-surface water pipes.

Based on the site history and the chemical analysis completed, it considered that the site will be suitable for standard PVC not PE water pipes subject to confirmation from the utility provider.

8.2 Buried Concrete

Based on the recorded water-soluble sulphate (1.7-195mg/l) and pH (7.7-10.3), the Made Ground and natural soils below the site (assuming mobile groundwater conditions) are characterised as DS-1 and the ACEC Class as AC-1 (in accordance with BRE Special Digest 1 (2005)). This equates to a DC-1 classification and as such in accordance with BS 8500 DC-1/GEN1 or RC25/30 concrete would be suitable for unreinforced and reinforced concrete.

9.0 Phase II Conceptual Model

The preceding information has been used to revise the conceptual model.

9.1 Human Health Risks

The chemical analysis has identified no exceedances of any determinants when compared against the relevant Patrick Parsons GAC for a commercial end use and as such, the soils beneath the site do not pose a risk to human health.

Based on the results of the ground gas monitoring to date, the site would classify as Characteristic Situation 1 (CS1) in accordance with BS 8485:2015+A1:2019. On this basis, gas protection measures are not required within the future development, subject to the completion of the ground gas monitoring programme and the final gas risk assessment report.

9.2 Controlled Waters Risk

The proposed layout shows the site will be covered predominantly by either impermeable hardstanding or the building footprint coupled with the presence of granular soils beneath the site and shallow groundwater, attenuation and dilution of any contaminants will reduce the contamination risk of either superficial Secondary Undifferentiated or bedrock Principal Aquifer beneath the site to a low risk. In addition to this, the site is situated in an industrialised area therefore unlikely to have a potable water abstraction in close proximity. No gross contamination has been identified at the site following chemical analysis and as such there is no source of contamination in the source-pathway-receptor model and it is therefore considered that there is a negligible risk to controlled waters.

9.3 Conceptual Site Model

An updated assessment of relevant PCLs and associated risk ratings has been completed and a summary is provided in the Table on the next page.

Source	Pathway	Receptor	Consequence	Probability	Risk Assessment and Justification
	Dermal contact, inhalation and	Future site user/worker	Mild	Unlikely	$\label{lem:continuity} \textbf{Very Low Risk} - \text{No sources of contamination encountered on-site. Topsoil} \ , \\ \text{Made Ground and natural soils can be reused on-site.}$
On-site sources –	ingestion of contaminants in soil and soil derived dust	Site construction worker	Mild	Unlikely	Very Low Risk - Construction workers have a shorter exposure period and risks shall be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015.
site contamination.	Inhalation of volatile	Future site user/worker	M. odi	71071181	Very Low Risk – Characteristic Situation 1 due to the lack of recorded ground
	ground gas	Site construction worker	Medium	Offilikely	gas during the monitoring programme.
On-site sources – Slight elevations of	Limited vertical	Groundwater within superficial deposits		Unlikely	Very Low Risk: The Receptor is unlikely to be utilised as a potable source, as such it should be considered as a pathway.
Copper, Lead and Zinc leachate levels	contamination due	Groundwater within bedrock	Mild	Unlikely	Very Low Risk: Limited contamination encountered on-site during site works. Restricted pathway between source and receptor.
when compared against EQS	hardstanding.	Surface Water Features		Unlikely	Very Low Risk – No contamination encountered on-site during site works.

Asbestos has been removed from the Phase II conceptual site model as no asbestos was encountered in any of the samples analysed and there was no visual evidence of any suspected ACM containing material or fly tipped ACMs.

10.0 Remediation and Validation

10.1 Protection of End-Users

The chemical analysis has identified no exceedances within the soil samples tested when compared to the GACs for a commercial end-use. As such, it is considered that no remediation with respect to the risk from soil contamination to human-health is required.

Should topsoil be required for any areas of proposed soft landscaping this will likely require importation. Imported topsoil will need to be chemically validated to ensure it is suitable for a commercial end-use. All imported soils should be chemically validated at the rates shown in the table below:

Source and Validation	Chemical Analysis Suite				
Rate	General Soil Suite	Asbestos	Hydrocarbons (TPHCWG)		
Greenfield Source 1 per 150m³	✓				
Brownfield Source 1 per 100m³	✓	✓	✓		
Generated Soil 1 per 50m³	✓	✓	✓		

10.2 Human Health - Ground Gas

Based on the results of the ground gas monitoring programme to date the site has been classified as Characteristic Situation 1 (CS1) in accordance with BS 8485:2015+A1:2019 and as such gas protection measures are not required.

The above recommendations are subject to completion of the monitoring programme and approval from the Local Authority.

10.3 Protection of Construction Workers

Specific remediation to protect construction workers is not required. However, during future construction works on site, risks associated with soils must be adequately mitigated by law, specifically the Construction Design Management (CDM) Regulations, 2015. In accordance with CDM, potential risks to human health and the environment from construction activities shall be appropriately identified and all necessary steps are taken to eliminate/manage that risk with the use of appropriate risk assessments and safe systems of work, including using suitable personal protective equipment (PPE) in line with the ground workers risk assessment.

10.4 Protection of Controlled Waters

The site is not considered to pose a risk to controlled waters and thus no remediation is required.

10.5 Protection of Construction Materials

Specific remediation to protect construction materials should not be required, standard PE/PVC water pipes will be sufficient, subject to approval from the utility provider. In accordance with BS 8500 DC-1 and RC25/30 concrete would be suitable for unreinforced and reinforced concrete

10.6 Waste Disposal Classification

The results of the chemical analysis where subject to an online Hazwaste Assessment. The online Hazwaste assessment has confirmed that all ten samples that underwent chemical analysis, have been classified as non-hazardous. As such, it is considered that should any material require removal from site it may be suitable for disposal as non-hazardous to an inert waste landfill subject to confirmation by the receiving landfill site.

The full Hazwaste assessment is included in Appendix D

10.7 Unrecorded or Unexpected Contamination

During future site redevelopment, groundworkers should remain vigilant for previously unrecorded or unexpected visual and/or olfactory evidence of contamination, or ground conditions which appear inconsistent with those identified during the ground investigation completed by PP.

Examples of contamination may include, but may not be limited to blue billy, oil-stained soils, free phase oily liquid within soils, buried waste materials, fibrous materials, strong odours or marked variation in soil colour and should any unexpected ground conditions be encountered during construction, the following procedures should be adopted:

- All works in the area should be ceased and cordoned off;
- Patrick Parsons or similar geo-environmental consultant should attend site to inspect the area and if necessary collect samples for chemical analysis;
- If the inspection and/or chemical testing confirm the presence of additional contamination, the results will be shared with the LA EHO and any changes to the remedial strategy agreed. No works in the area will be undertaken to agreement has been reached;
- If the inspection and/or chemical testing confirm that no additional contamination is present, then works can proceed with no alteration to the remedial strategy.

11.0 Geotechnical Appraisal

11.1 Excavation Conditions

Excavations up to approximately 3.00m begl in the soils encountered during the ground investigation should be possible with standard mechanical excavation equipment (e.g. JCB 3CX). Trench support will be required due to the site being underlain by significant thicknesses of natural granular soils. Full temporary works trench support should be provided to any excavation where person entry is required.

Groundwater ingress was encountered during the investigation within all holes exploratory hole locations which surpassed 3.00m begl. Shallower groundwater has been recorded within all of the monitoring wells during the first two monitoring visits with groundwater levels recorded between 2.58m begl (WS02) and 2.90m begl (WS13). As such an allowance for groundwater ingress and control should be made for any excavation greater than 2.50m begl.

Should groundwater be encountered upon excavation, sump pumping techniques should be adequate to control any ingress. Foundations should be constructed as soon as possible after excavation to reduce loosening of the formation horizon.

11.2 Foundations

Based on development proposals it is considered that a traditional pad foundation solution may be feasible providing abnormally high loadings are not anticipated. An allowable bearing pressure of 150kN/m² should be achievable within the underlying medium dense superficial soils with a 1.50m by 1.50m pad at a depth of 1.50m begl and a vertical applied line load of 350 kN/m² per run with a proportion of available resistance used at 53%. Immediate settlements have been calculated at 27mm and long-term settlements at 42mm over a 60no. year period. Foundations should be deepened to extend through any Made Ground or loose superficial soils to at least 200mm into minimum medium dense natural soils.

The superficial natural soils are recorded to be predominantly granular and therefore have no volume change potential. As such, heave protections or deepening for tree influence will not be required.

Foundations along the western boundary should be deepened to a suitable depth where the resultant pressure bulb does not interact with the adjacent slope or drainage channel.

11.3 Floor slabs

It is anticipated that the formation horizon will expose relatively competent soils at shallow depth. As such it is considered that a ground bearing ground floor slab could be utilised at this site. It is assumed that the floor slab will be constructed on a granular stone blanket. In this instance it would be necessary to proof roll the formation horizon prior to compacting the sub-grade and identify any soft spots, that if revealed should be removed and replaced with a suitably compacted granular fill. A suspended floor slab or a well reinforced ground bearing slab with minimal penetrations (in accordance with BS8485) may be required if gas protection measures are required for the proposed development following completion of the gas monitoring program.

11.4 New Access Roads and Car Parking

The proposed development includes parking areas and access roads. Laboratory CBR testing has been carried out within WS04, WS12, WS15, WS16, WS17 and WS18 in locations of proposed access roads and car parking. The results are tabulated on the table below:

Location	Depth (m)	Result Range(%)
WS04	0.70	22 - 40
WS12	0.70	7.3 - 18
WS15	0.80	34 - 78
WS16	0.40	27 - 25
WS17	0.50	44 - 58
WS18	0.90	69 - 90

Based on the above results the Made Ground and natural soils beneath the site should provide a CBR design value of >10%, subject to in-situ CBR testing. Any soft spots should either be proof rolled or removed.

11.5 Soakaway Drainage Tests

Due to the presence of significant thicknesses of granular soils underlying the site, adequate infiltration rates may be recorded for the use of a soakaway drainage strategy. However, shallow groundwater and leachable contaminants have been recorded across the site, which precludes the use of a soakaway drainage system.

11.6 Slope Stability

Based on the current site levels there is a slope present along the western boundary of the proposed building, loading of the building should be carried to a depth where the pressure bulb does not interact with the slope or the off-site drain. However, a slope stability assessment may be required due to the proximity of the slope to the proposed structure. Any slope stability assessment should be undertaken by a suitably qualified engineer.

11.7 Retaining Structures

Given the existing topography in the areas of proposed development it is considered that no significant retaining structures are likely to be required. Should retaining structures be required along the western boundary of the site they should be designed by a suitably qualified structural engineer.

12.0 Further Investigation

Based on the ground conditions encountered in the site investigation it is considered that no further works are required.

Following review of this report a copy of it should be submitted to the Local Authority planning department prior to any development works as this is often a condition of planning.

Appendix A Figures

this drawing and design is the copyright of aja architects Ilp and must not be reproduced in part or in whole without prior written consent. contractors must verify all dimensions on site before commencing work or preparing shop drawings If in doubt ASK.

Where this drawing contains any Ordnance Survey mapping material, it has been reproduced under license number 100052278.
Ordnance Survey © Crown copyright

Schedule of Accommodation

All areas are approximate gross internal

Unit 1 (approx footprint)

Existing 30,655 sq.m. 329,970 sq.ft. 82,830 sq.ft. 7,695 sq.m. Extension 38,350 sq.m. 412,800 sq.ft. Total

Existing Car Parking 114 spaces **Proposed Car Parking** 300 spaces inc. Mobility Parking 41 spaces (of which Disabled 25 spaces) Total Car Parking (Maxed Out) 414 spaces

Existing Motorcycle Parking 0 spaces Proposed Motorcycle Parking 17 spaces **Total Motorcycle Parking** 17 spaces

Existing Cycle Parking Proposed Cycle Parking (1 per 1000) 42 **Total Cycle Hoops** 42 (21 hoops)

Existing HGV Parking 27 spaces Proposed HGV Parking 43 spaces Total HGV Parking 70 spaces

20 docks **Existing Dock Levellers** 14 docks **Proposed Dock Levellers Total Dock Levellers** 34 docks

4 doors **Existing Level Access Doors Proposed Level Access Doors** 0 doors **Total Level Access Doors** 4 doors

22.9 acres 9.26 ha. Plot Area

aja architects Ilp 1170 Elliott Court

T: 024 7625 3200 F: 024 7625 3210 Herald Avenue
Coventry Business Park
COVENTRY CV5 6UB

E: aja@aja-architects.com
W: www.aja-architects.com

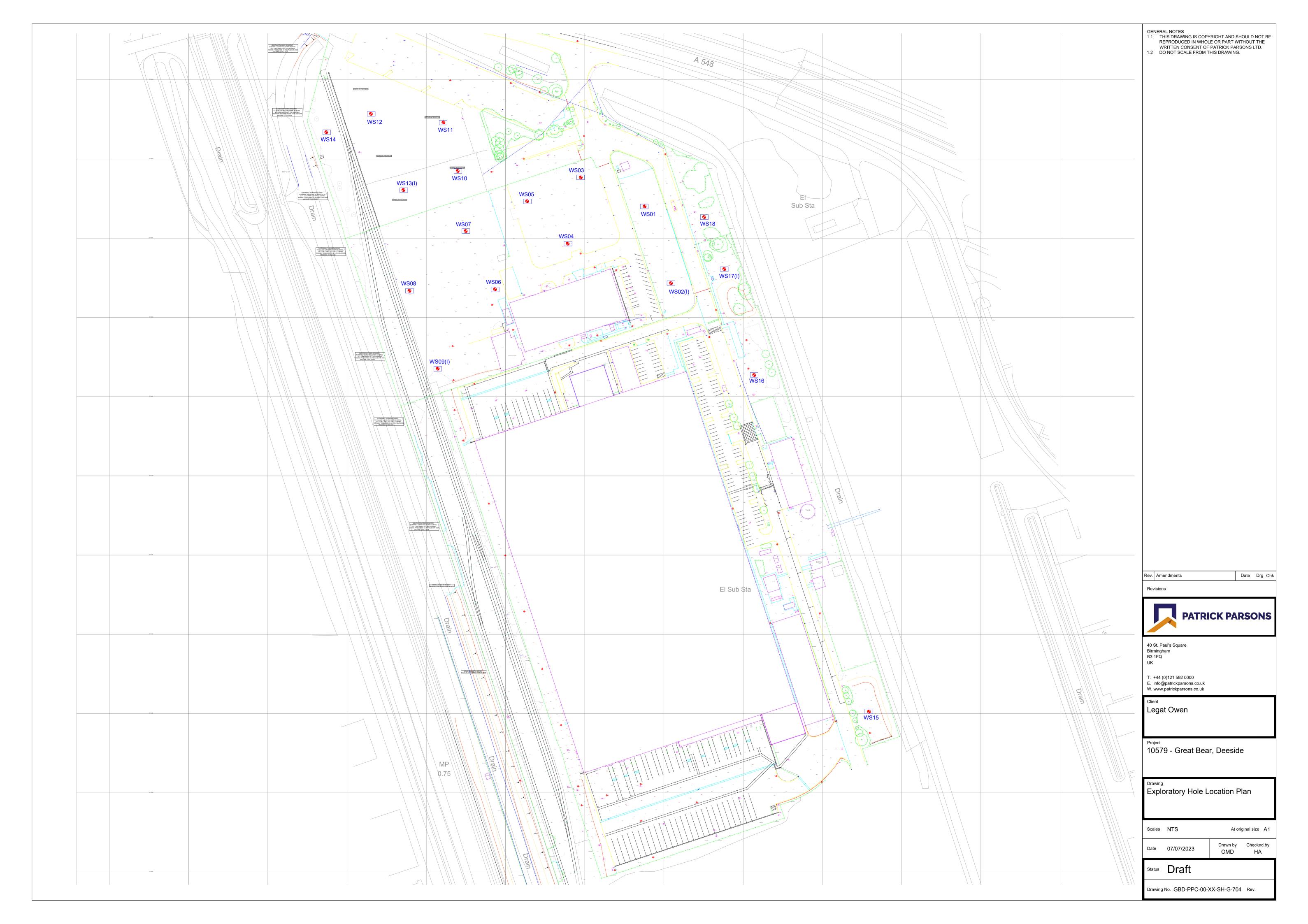
AJA Architects is the trading style of AJA Architects Consulting limited (a limited company no. 10692795) and AJA Architects LLP (a limited liability partnership registered in England No. OC326721)

Legat Owen

Great Bear

Link 56 Deeside

Indicative Site Plan


- Unit 1

scale 1:1000@A1 drawn **SRA** date 24.11.21

6850-014

PRELIMIN A RY

Appendix B
Exploratory Hole Location Plan and Logs

				Borehole Log			Borehole No. WS01			
PATRICKPARSONS										
					Sheet 1 of 1					
			Project No. 10579 Co-ords:			Hole Type WS Scale 1:25				
					Level:					
lient:		Legat Owen					Dates: 26/06/2023		Logged By OMD	
Water Strikes		Sample and In Situ Testing			Depth	Level (m)	Legend	Stratum Description		
	Suikes	Depth (m)	Туре	Results	(m)	(111)		MADE GROUND: Concrete		
					0.32			Pale yellowish brown fine to coarse S/	AND.	- - - - -
		0.45 0.60 0.70	ES B D					(TIDÁL FLAT DEPOSITS)		-
		1.00	SPT	N=16 (3,4/4,4,4,4	1.00			End of Borehole at 1.00m		1 -
								LING OF BOTESTINE AT 1.00111		2
										3
										4
										5 -

Remarks

1) Borehole CAT sccanned before drilling. 2) No groundwater encountered during drilling. 3) Borehole backfilled with arisings.

Borehole No. **Borehole Log** PATRICKPARSONS **WS02** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Great Bear, Link 56, Deeside 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By 26/06/2023 Client: Dates: Legat Owen OMD Sample and In Situ Testing Water Depth Level Legend Well Stratum Description (m) Strikes (m) Depth (m) Results Type MADE GROUND: Concrete 0.32 Pale yellowish brown fine to coarse SAND. 0.40 ES (TIDÁL FLAT DEPOSITS) 0.50 0.50 1.00 SPT N=10 (3,3/1,2,3,4) At 1.00m begl, becomes medium dense. 1.50 D SPT 2.00 N=9 (2,2/3,1,2,3) 2 At 2.00m begl, becomes loose. At 2.20m begl becomes slightly damp 2.50 D 3.00 SPT N=3 (1,0/0,0,2,1) 3 At 3.00m begl, becomes loose. Below 3.20m begl grey. 3.50 Black clayey fine to coarse SAND. (TIDAL FLAT DEPOSITS) D 3.70 3.70 ES 4.00 SPT N=12 (2,2/2,3,3,4) 4 At 4.00m begl, medium dense. 5.00 5 End of Borehole at 5.00m

Remarks

¹⁾ Borehole CAT sccanned. 2) Groundwater encountered at 3.00m begl during drilling. 3) Borehole installed with soil gas and groundwater monitoring point.

									Borehole N	0.
) P A	TRICK	RICKPARSONS			Bo	reho	ole Log	WS03	
									Sheet 1 of	
rojec	t Name:	Great Bo	ear, Lir	nk 56, Deeside	Project No. 10579		Co-ords:		Hole Type WS	•
.ocati	on:	Deeside	, Wale	s			Level:		Scale 1:25	
lient:		Legat O	wen				Dates:	26/06/2023	Logged By	<i>,</i>
		Commis		n City Tanting		Ι			OMD	
Well	Water Strikes	Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
								MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarse	Gravel is se quartzite and	-
					0.20			concrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick.	ly gravel. Gravel arse quartzite,	
					0.50			End of Borehole at 0.50m		
										1 -
										=
										-
										2 —
										3 -
										=
										=
										-
										4 -

Depth (m) 0.20 0.50	Level (m)	Co-ords: Level: Dates: Legend	26/06/2023 Stratum Description MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarse concrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to coconcrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarse flint. Cobbles are subangular to subrounded fine to coarse flint.	Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	1
Depth (m) 0.20 0.50	Level	Co-ords: Level: Dates:	26/06/2023 Stratum Description MADE GROUND: Grey sandy gravel. I subangular to subrounded fine to coarsconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarsflint. Cobbles are subangular to subrounder.	Hole Type WS Scale 1:25 Logged By OMD Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse Gravel is se quartzite and	
Depth (m) 0.20 0.50		Level: Dates:	Stratum Description MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarseconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarselint. Cobbles are subangular to subrou	WS Scale 1:25 Logged By OMD Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	
0.20 0.50		Dates:	Stratum Description MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarseconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarselint. Cobbles are subangular to subrou	1:25 Logged By OMD Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	,
0.20 0.50			Stratum Description MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarseconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarselint. Cobbles are subangular to subrou	Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	
0.20 0.50			Stratum Description MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarseconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarselint. Cobbles are subangular to subrou	Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	
0.20 0.50		Legend	MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarse concrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarsflint. Cobbles are subangular to subrounded fine to subrounded fi	Gravel is se quartzite and ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	
0.50			subangular to subrounded fine to coarsconcrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coarsflint. Cobbles are subangular to subrounded fine to subrounde	ly gravel. Gravel arse quartzite, line to coarse . Gravel is se quartzite and	-
0.50			concrete. MADE GROUND: Greyish brown sand is subangular to subrounded fine to co concrete and brick. Pale yellowish brown slightly gravelly f SAND with a moderate cobble content subangular to subrounded fine to coard flint. Cobbles are subangular to subrou.	ly gravel. Gravel arse quartzite, ine to coarse . Gravel is se quartzite and	-
			SAND with a moderate cobble content subangular to subrounded fine to coars flint. Cobbles are subangular to subrou	. Gravel is se quartzite and	-
5,5) 1.00			(TIDAL FLAT DEPOSITS)	anded cobbie	
		*	End of Borehole at 1.00m		1 —
					2 3 4 1 1 1 1 1 1 1 1 1

Borehole No. **Borehole Log** PATRICKPARSONS **WS05** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Great Bear, Link 56, Deeside 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By Client: Dates: 26/06/2023 Legat Owen OMD Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Results Depth (m) Type MADE GROUND: Grey sandy gravel. Gravel is subangular to subrounded fine to coarse quartzite and 0.20 MADE GROUND: Greyish brown sandy gravel. Gravel is subangular to subrounded fine to coarse quartzite, concrete and brick. 0.50 MADE GROUND: Greyish brown gravely fine to coarse sand. Gravel is subangular to subrounded fine 0.60 ES to coarse quartzite, concrete and brick 0.70 Pale yellowish brown fine to coarse SAND. (TIDAL FLAT DEPOSITS) 1.00 SPT N=13 (4,3/4,3,3,3) At 1.00m begl, becomes medium dense. 1.60 D SPT 2.00 N=9 (3,3/3,2,2,2) 2 At 2.00m begl, becomes loose. 2.60 D SPT N=5 (2,1/1,1,1,2) 3 At 3.00m begl, becomes loose. 3.80 Greyish black slightly clayey fine to coarse SAND. (TIDAL FLAT DEPOSITS) D 3.90 SPT N=4 (4,4/1,1,1,1) 4.00 4 At 4.00m begl, becomes loose. 4.45 N=41 (3,5/8,10,11,12) 4.45 End of Borehole at 4.45m 5

Remarks

									Borenole IN	0.
	PA'	ГКІСК	PΑ	RSONS		Bo	reh	ole Log	WS06	
									Sheet 1 of	
Projec	t Name:	Great B	ear, Lir		Project No. 10579		Co-ords:		Hole Type WS	!
_ocati	on:	Deeside	e, Wale	s			Level:		Scale 1:25	
Client:		Legat O)wen				Dates:	26/06/2023	Logged By OMD	′
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description		
(// <u>/</u> (//	Strikes	Depth (m)	Туре	Results	(m)	(m)	**********	MADE GROUND: Grey sandy gravel.		
								subangular to subrounded fine to coars concrete.	se quartzite and	-
					0.30		**********	Pale yellowish brown fine to coarse SA (TIDAL FLAT DEPOSITS)	ND.	=
								(TIDAL FLAT DEPOSITS)		_
		. = .								_
		0.70	ES							
		0.90	D							1 —
		1.00	SPT	N=13 (3,4/3,4,3,3))			At 1.00m begl, becomes medium de	ense.	1 —
										_
										-
		2.00	SPT	N=13 (2,3/3,4,3,3))			At 2.00m begl, becomes medium de	ense.	2 —
										_
										-
					2.90					
		3.00	SPT	N=18 (4,4/4,4,5,5)				Medium dense blackish grey fine to co (TIDAL FLAT DEPOSITS)	arse SAND.	3 —
										-
										_
										_
										-
		4.00	SPT	N=8 (2,2/3,2,2,1)						4 —
				(-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,				At 4.00m begl, becomes loose.		
										=
										-
										-
										- -
										=
										=
///\\		5.00	SPT	N=32 (2,4/6,7,9,10	5.00	1		End of Borehole at 5.00m		5 —

						_			Borehole N	0.
	PA7	ГКІСК	PΑ	RSONS		Bo	reh	ole Log	WS07	
									Sheet 1 of	
Projec	t Name:	Great B	ear, Lin	k 56, Deeside	Project No. 10579		Co-ords:		Hole Type WS	:
_ocati	on:	Deeside	e, Wales	s			Level:		Scale	
Niamt.		Lagat O					Datas	27/06/2022	1:25 Logged By	/
Client:		Legat O					Dates:	27/06/2023	OMD	
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Deptil (III)	Туре	Nesuits				MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coars	Gravel is	_
					0.20			concrete. Pale yellowish brown fine to coarse SA		=
								(TIDAL FLAT DEPOSITS)		=
										_
		0.60	ES							-
		0.80	В							=
		0.80 1.00	D	N=12 /2 2/4 4 2 2	,					=
		1.00	SFI	N=13 (2,2/4,4,3,2	'			At 1.00m begl, becomes medium de	ense.	' =
										=
										=
										=
										=
		1.80	D							=
		2.00	SPT	N=9 (3,3/3,2,2,2)	,			At 2.00m begl, becomes loose.		2 -
								At 2.00111 begi, becomes 100se.		=
										- -
										=
										- -
		2.80	D							=
		2.60								=
		3.00	SPT	N=3 (1,1/1,0,1,1))			At 3.00m begl, becomes very loose.		3 -
										=
										=
					3.50		x: ^: :X:,	Black slightly silty fine to coarse SAND).	-
		3.70	ES				x × x x x x	(TIDAL FLAT DEPOSITS)		-
		5.70	Lo				x × x x			-
		4.00	SPT	N=10 (2,2/2,2,2,4	4.00		x × × ×			
		4.00		14-10 (2,2/2,2,2,4	7.00			Pale yellowish brown fine to coarse SA (TIDAL FLAT DEPOSITS)	AND.	"
								At 4.00m begl, becomes medium de	ense.	=
					4.50			Greyish black fine to coarse SAND. (TIDAL FLAT DEPOSITS)		- -
								(HDALI LAI DLI OSITO)		-
										=
		5.00	SPT	N=3 (1,1/1,1,0,1)				Continued on Next Sheet		5 —

									Borehole No	0.
	PA'	ТКІСК	PΑ	RSONS		Bo	reho	ole Log	WS07	
								<u> </u>	Sheet 2 of	
rojec	t Name:	Great Bo	ear, Lir		Project No. 10579		Co-ords:		Hole Type WS	•
.ocati	on:	Deeside	. Wale				Level:		Scale	
									1:25 Logged By	,
lient:		Legat O					Dates:	27/06/2023	OMD	
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results				At 5.00m begl, becomes very loose.		
]
		5.45	SPT	N=10 (3,2/2,2,2,4	5.45			End of Borehole at 5.45m		1 1
]
										6 —
										=
										7 -
										8 =
										=
										=
										=
										9 —
										=
			ı	i .	1	1	1	İ		10 —

Borehole No. **Borehole Log** PATRICKPARSONS **WS08** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Great Bear, Link 56, Deeside 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By Client: Dates: 27/06/2023 Legat Owen OMD Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Results Depth (m) Type MADE GROUND: Grey sandy gravel. Gravel is subangular to subrounded fine to coarse quartzite and concrete. 0.20 Pale yellowish brown fine to coarse SAND. (TIDAL FLAT DEPOSITS) 0.30 ES 0.40 В 0.40 D 1.00 SPT N=13 (3,4/4,4,2,3) At 1.00m begl, becomes medium dense. 1.40 D 2.00 SPT N=6 (2,1/2,1,1,2) 2 At 2.00m begl, becomes loose. D 2.40 At 2.40m begl becomes damp and slightly silty. 3.00 SPT N=16 (3,4/4,4,4,4) 3 At 3.00m begl, becomes medium dense. 3.40 D 4.00 SPT N=12 (2,2/2,2,3,5) 4 At 4.00m begl, becomes medium dense. Below 4.60m begl mottled grey. 5.00 5.00 SPT N=3 (0,0/1,1,0,1) 5 End of Borehole at 5.00m

Remarks

Borehole No. **Borehole Log** PATRICKPARSONS **WS09** Sheet 1 of 1 Project No. Hole Type Great Bear, Link 56, Deeside Co-ords: Project Name: 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By Dates: Client: 27/06/2023 Legat Owen OMD Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Results Depth (m) Type MADE GROUND: Grey sandy gravel. Gravel is subangular to subrounded fine to coarse quartzite and concrete. 0.20 Pale yellowish brown fine to coarse SAND. (TIDAL FLAT DEPOSITS) 0.25 ES 0.60 В 0.70 D 1.00 SPT N=14 (3,3/4,3,4,3) At 1.00m begl, becomes medium dense. D 1.70 SPT 2 00 N=10 (2,2/2,3,2,3) 2 At 2.00m begl, becomes medium dense. 2.70 D SPT N=25 (3,5/5,6,7,7) At 3.00m begl, becomes medium dense. 3.20 Black slightly silty slightly clayey fine to coarse SAND. (TIDAL FLAT DEPOSITS) 3.30 D 3.50 Grey fine to coarse SAND. (TIDAL FLAT DEPOSITS) 3.60 D 4.00 SPT 4.00 N=8 (3,2/2,2,2,2) 4 End of Borehole at 4.00m 5

Remarks

1) Borehole CAT sccanned before drilling. 2) No groundwater encountered during drilling. 3) Borehole installed with a soil gas and groundwater monitoring point.

Borehole No. **Borehole Log** PATRICKPARSONS **WS10** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Great Bear, Link 56, Deeside 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By Client: Dates: Legat Owen 27/06/2023 OMD Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Depth (m) Type Results MADE GROUND: Grey sandy gravel. Gravel is subangular to subrounded fine to coarse quartzite, 0.10 asphalt and concrete. MADE GROUND: Greyish brown gravely fine to 0.30 ES coarse sand. Gravel is subangular to subrounded fine to coarse quartzite, concrete and asphalt 0.50 Pale yellowish brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse quartzite and flint. (TIDAL FLAT DEPOSITS) SPT N=16 (4,5/5,4,3,4) 1.00 At 1.00m begl, becomes medium dense. 1.60 D SPT 2 00 N=13 (3,3/3,3,3,4) 2 At 2.00m begl, becomes medium dense. 2.60 Brown slightly clayey fine to coarse SAND. 2.70 D (TIDAL FLAT DEPOSITS) 3.00 SPT N=15 (3,3/4,3,4,4) 3.00 3 Pale yellowish brown slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse quartzite and flint. (TIDAL FLAT DEPOSITS) At 3.00m begl, becomes medium dense. 4.00 SPT N=12 (2,2/2,2,2,6) 4 At 4.00m begl, becomes medium dense. 4.45 SPT N=40 (7,6/8,9,11,12) 4.45 End of Borehole at 4.45m 5

Remarks

									Borehole N	0.
	PA7	ГКІСК	PΑ	RSONS		Bo	reho	ole Log	WS11	
							Г		Sheet 1 of	
rojec	t Name:	Great B	ear, Lir		Project No. 10579		Co-ords:		Hole Type WS)
ocati	on:	Deeside	, Wale	s			Level:		Scale 1:25	
lient:		Legat O	wen				Dates:	27/06/2023	Logged By OMD	У
	Motor	Sample	and I	n Situ Testing	Donth	Lovel				
Vell	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.40 0.40 0.80 1.00	B D ES SPT	N=17 (3,3/3,4,5,5	0.20			MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coarconcrete and brick. Pale yellowish brown slightly gravelly f SAND. Gravel is subangular to subrou coarse quartzite and flint. (TIDAL FLAT DEPOSITS) End of Borehole at 1.00m	se quartzite,	3

									Borehole No) .
	PA'	ТКІСК	PΑ	RSONS		Во	reho	ole Log	WS12	
					Drainet No.		T		Sheet 1 of	
Projec	t Name:	Great Be	ear, Lin	k 56, Deeside	Project No. 10579		Co-ords:		Hole Type WS	
Locati	on:	Deeside	\/\/ales	-			Level:		Scale	
LUCALI	OII.	Deeside	, vvaics				Level.		1:25	
Client:		Legat O	wen				Dates:	27/06/2023	Logged By OMD	
Well	Water Strikes			Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results		. ,		MADE GROUND: Grey sandy gravel.	Gravel is	_
		0.20	D		0.10			subangular to subrounded fine to coard concrete and brick.	//	=
		0.20	ES		0.30			MADE GROUND: Brown slightly grave clayey fine to coarse sand. Gravel is s	elly slightly	
								subrounded fine to coarse quartzite, but	rick and	_
								∖ concrete. Pale yellowish brown slightly gravelly f	ine to coarse	-
		0.60	D					SAND. Gravel is subangular to subrou coarse quartzite.	nded fine to	_
		0.70	В					(TIDAL FLAT DEPOSITS)		=
										=
		1.00	SPT	N=18 (4,5/5,5,4,4	1.00			End of Borehole at 1.00m		1 —
								End of Boronois at 1100m		=
										_
										-
										_
										_
										=
										_ =
										2 —
										=
										=
										=
										_
										=
										=
										-
										3 —
										_
										_
										3
										_
										=
										-
										-
										4
										• -
										=
										=
										-
										=
										=
										_

									Borehole No	0.
	P A'	ТКІСК	PΑ	RSONS		Bo	reh	ole Log	WS13	
					D : (N				Sheet 1 of	
Projec	t Name:	Great B	ear, Lin		Project No. 10579		Co-ords:		Hole Type WS	,
Locati	on.	Deeside	. Wales				Level:		Scale	
Locati	O11.	Decoide	, vvaice				ECVCI.		1:25	
Client:		Legat O	wen			1	Dates:	28/06/2023	Logged By OMD	/
Well	Water Strikes	Sample Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		0.30	D ES	ricculto	0.10			MADE GROUND: Grey sandy gravel. subangular to subrounded fine to coar asphalt and concrete. MADE GROUND: Greyish brown grave coarse sand. Gravel is subangular to set to coarse quartzite, concrete and asphenesses. Pale yellowish brown slightly gravelly for SAND. Gravel is subangular to subrounded.	se quartzite, ely fine to subrounded fine alt ine to coarse	
		0.80	D					coarse quartzite and flint. (TIDAL FLAT DEPOSITS)		-
		2.00	SPT SPT	N=16 (4,4/4,4,4,4 N=12 (3,3/3,3,3,3,3				At 1.00m begl, becomes medium de		1
	•	3.00 4.00	SPT	N=19 (3,4/4,5,5,5 N=22 (2,5/5,4,6,7				At 3.00m begl, becomes medium de	ense.	3 —

1) Borehole CAT sccanned before drilling. 2) No groundwater encountered during drilling. 3) Borehole installed with a soil gas and groundwater monitoring point.

									Borehole No	0.
	PATRICKPARSONS					Во	reh	ole Log	WS14	
									Sheet 1 of	
Projec	t Name:	Great Be	ear, Lin	ık 56, Deeside	Project No. 10579		Co-ords:		Hole Type WS	
		Б :1	14/ 1		10070				Scale	
ocati	on:	Deeside	, vvaie	S			Level:		1:25	
Client:		Legat O	wen				Dates:	28/06/2023	Logged By OMD	'
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m)	Туре	Results	,	,		MADE GROUND: Pale yellowish brow	n fine to coarse	_
								sand.		-
					0.30			MADE GROUND: Greyish black slight	ly gravally fina	_
		0.40	ES					to coarse sand. Gravel is subangular to	o subrounded	
		0.50	D					fine to coarse quartzite and concrete.		_
		0.60	В							
										_
					0.90			Loose pale yellowish brown fine to coa	arse SAND.	_
		1.00	SPT	N=4 (1,1/1,1,1,1))			(TIDAL FLAT DEPOSITS)		1 —
										Ξ
										_
		1.60	D							_
										-
										=
		2.00	SPT	N=12 (4,3/3,3,4,2	2)			At 2.00m begl, becomes medium de	ense.	2 _
										=
										_
										_
		2.60	D							_
										_
		3.00	SPT	N=13 (2,3/3,3,4,3	3.00		1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	End of Borehole at 3.00m		3 —
										_
										_
										_
										_
										4 —
										=
										=
										_
										=
							1			

Project Name: Great Bear, Link 56, Decide Project No. 10579										Borehole N	0.
Sheet 1 of 1 Hole Type		PΑ̈́	ТКІСК	RSONS		Bo	reho	ole Log	WS15		
Ocation: Deeside, Wales											
Legat Owen Legat Owen Debth (m) Type Results Depth (m) Type Ty	rojec	t Name:	Great Bo	ear, Lir				Co-ords:			•
Bient Legat Ower Dates 28/06/2023 Legged By OMD	.ocatio	on:	Deeside	, Wale	s			Level:		l	
Water Strikes Depth (m) Type Results Depth (m) Stratum Description	lient:		Legat O	wen				Dates:	28/06/2023	Logged By	y
Strikes Depth (m) Type Results (m) (m) Legerd Care and Strikes Depth (m) Type Results (m) (m) Care and SAND. Green is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is subanipular to subrounded fine to care sand with a moderate cobble content. Care is substituted and fine to care sand with a moderate cobble content. Care is substituted and fine to care sand with a moderate cobble content. Care is substituted and fine to care sand with a moderate cobble content. Care is substituted and fine to ca		10/ /	Comple	and I	n City Tooting	Б. "				OND	
0.10 ES 0.20 0.20 0.50 D 0.50 D 0.50 SPT 50 (2,2/50 for 135mm) 1.00 End of 8erehole at 1.00m 1 1 - 1 1.00m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Well	Strikes				Depth (m)		Legend	Stratum Description		
			0.10 0.50 0.80	ES D					coarse SAND. Gravel is subangular to fine to coarse quartzite and flint. (TOPSOIL) MADE GROUND: Pale yellowish brow gravelly fine to coarse sand with a mot content. Gravel is subangular to subro coarse quartzite, flint, concrete and bri brick.	n slightly derate cobble unded fine to	2

									Borehole N	
) P A	TRICK	PΑ	RSONS		Во	reh	ole Log	WS16	
Projec	t Name:	Great Be	ear, Lin	nk 56, Deeside	Project No.		Co-ords:		Sheet 1 of Hole Type	
Locati		Deeside			10579		Level:		WS Scale	
								00/00/0000	1:25 Logged By	/
Client:	1	Legat O					Dates:	28/06/2023		
Well	Water Strikes	Sample Depth (m)		n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		Depth (m) 0.10 0.30 0.40	Type ES D B	Results	0.20			Dark brown slightly gravelly slightly cla coarse SAND. Gravel is subangular to fine to coarse quartzite and flint. (TOPSOIL) MADE GROUND: Greyish brown sligh sand. Gravel is subangular to subrouncoarse quartzite, brick and concrete. End of Borehole at 0.50m	subrounded tly gravelly	1 2 3
				l						-

Borehole No. **Borehole Log** PATRICKPARSONS **WS17** Sheet 1 of 1 Project No. Hole Type Co-ords: Project Name: Great Bear, Link 56, Deeside 10579 WS Scale Location: Deeside, Wales Level: 1:25 Logged By Dates: Client: 28/06/2023 Legat Owen OMD Sample and In Situ Testing Water Depth Level Well Legend Stratum Description (m) Strikes (m) Results Depth (m) Type Dark brown slightly gravelly slightly clayey fine to coarse SAND. Gravel is subangular to subrounded fine to coarse quartzite and flint. 0.20 (TOPSOIL) At 0.19m begl membrane MADE GROUND: Black slightly gravelly slightly clayey 0.40 0.40 0.50 ES fine to coarse sand. Gravel is subangular to subrounded fine to coarse quartzite and brick. 0.70 Pale yellowish brown fine to coarse SAND. (TIDAL FLAT DEPOSITS) SPT 1.00 N=14 (5,4/3,4,4,3) At 1.00m begl, becomes medium dense. 1.40 D SPT 2.00 N=10 (1,1/1,2,3,4) 2 At 2.00m begl, becomes medium dense. 2.40 D 2.80 Blackish grey fine to coarse SAND. (TIDAL FLAT DEPOSITS) 3.00 N=50 (6,8/11,13,13,13) 3 End of Borehole at 3.00m 4 5

Remarks

1) Borehole CAT sccanned before drilling. 2) No groundwater encountered during drilling. 3) Borehole installed with a soil gas and groundwater monitoring point.

									Borehole No	٥.
	PA'	PATRICKPARSONS				Bo	reho	ole Log	WS18	
									Sheet 1 of	
Projec	t Name:	Great B	ear, Lin	ık 56, Deeside	Project No. 10579		Co-ords:		Hole Type WS	
_ocati	on:	Deeside	, Wale	s			Level:		Scale 1:25	
Client:		Legat O	wen				Dates:	28/06/2023	Logged By OMD	'
Well	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(111)	(111)		Grey slightly sandy Gravel. Gravel is s		
		0.30 0.40 0.90 1.00	ES D B SPT	N=7 (3,2/2,1,2,2	0.20			Grey slightly sandy Gravel. Gravel is sisubrounded fine to coarse quartzite. At 0.19m begl membrane Pale yellowish brown slightly gravelly of coarse SAND. Gravel is subangular to fine to coarse quartzite. Cobbles are st quartzite. (TIDAL FLAT DEPOSITS) End of Borehole at 1.00m	cobbly fine to	2
										- - - - - - - - - - - - - - - - - - -

Appendix C
Laboratory Test Results

Omar Dalvai

Patrick Parson□ 40 St. Paul's Square Birmingham B3 1FQ

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: Patrick Parsons

Your order number:

Analytical Report Number: 23-42707

Project / Site name: Great Bear, Link 56 Deeside Samples received on: 29/06/2023

Samples instructed on/ **Your job number:** 10579 03/07/2023

Analysis started on:

Analysis completed by: 10/07/2023

Report Issue Number: 1 Report issued on: 10/07/2023

Samples Analysed: 4 leachate samples - 13 soil samples

2255

Signed:

Anna Goc PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Speciated Total EPA-16 PAHs

Lab Sample Number				2734333	2734334	2734335	2734336	2734337
Sample Reference				2/34333 WS02	2/34334 WS02	2/34335 WS04	2/34336 WS05	2/34337 WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	3.70	0.60	0.60	3.50
Date Sampled				26/06/2023	26/06/2023	26/06/2023	26/06/2023	26/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time raken		-		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Limit of detection	Acc					
Analytical Parameter	Units	of d	Accreditation Status					
(Soil Analysis)	Ŗ	ete	tus E					
		ctior	9					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.1	25	5.7	3.9	20
Total mass of sample received	kg	0.001	NONE	0.8	0.9	0.8	0.8	0.9
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	Not-detected	Not-detected	-
Asbestos Analyst ID	N/A	N/A	N/A	JBH	N/A	JBH	JBH	N/A
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	9.2	-	10.3	9.6	-
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Free Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Total Sulphate as SO4	%	0.005	MCERTS	0.017	-	0.155	0.092	-
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	3.4	-	390	200	-
Equivalent)	g/l	0.00125	MCERTS	0.0017	-	0.19	0.1	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	1.7	-	195	102	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	< 0.1	0.7	0.2	0.1	< 0.1
Total Phenols				_				_
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Speciated PAHs		0.05	MCERTC					1
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	< 0.05	-
Acenaphthylene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	-	0.11	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	0.15	< 0.05	-
Fluorene Phenanthrene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	-	0.18 0.6	0.07 0.18	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05			< 0.05	
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	0.16 1.1	0.07	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	1.1	0.07	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	0.6	< 0.05	_
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	0.61	< 0.05	_
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	_	0.74	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	-	0.34	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	0.61	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	0.48	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	0.1	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	0.49	< 0.05	-
· / /	<u> </u>				•			
Total PAH								
0 1 1 1 7 1 1 5 1 4 5 1 1 1	ma/ka	0.0	ISO 17025					1

ISO 17025

< 0.80

mg/kg

0.8

< 0.80

7.3

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number				2734333	2734334	2734335	2734336	2734337
Sample Reference				WS02	WS02	WS04	WS05	WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	3.70	0.60	0.60	3.50
Date Sampled				26/06/2023	26/06/2023	26/06/2023	26/06/2023	26/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.9	-	8	6.9	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	0.4	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	-	< 1.2	< 1.2	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	5.6	-	15	11	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	5.3	-	23	24	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	5.4	-	35	25	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4.7	-	12	5.2	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	18	-	170	53	-
Monoaromatics & Oxygenates Benzene Toluene	µg/kg µg/kg	5 5	MCERTS MCERTS	< 5.0	-	< 5.0	< 5.0	-
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	-	< 5.0	< 5.0	-
,	μg/kg	5	MCERTS	< 5.0	-	< 5.0	< 5.0	
p & m-xylene	μg/kg	5	MCERTS	< 5.0		< 5.0	< 5.0 < 5.0	-
o-xylene MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0 # < 5.0	-	< 5.0 # < 5.0	< 5.0	-
Petroleum Hydrocarbons	13, 3			₹ 3.0	-	< 5.0	< 5.0	-
TPH-CWG - Aliphatic >EC5 - EC6 $_{ m HS_1D_AL}$	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 $_{ m HS_1D_AL}$	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 $_{ m HS_1D_AL}$	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	-	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC35 - EC40 _{EH_CU_1D_AL}	mg/kg	10	NONE	< 10	-	< 10	< 10	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	-	< 10	< 10	-
				1	1			1
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR}	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic > EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	-	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	-	< 10	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	-	27	< 10	-
TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR}	mg/kg	10	NONE	< 10	-	< 10	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg mg/kg	10	NONE NONE	< 10	-	34	< 10	-
TPH Total C5 - C40 _{EH_CU+HS_1D_TOTAL}	ilig/kg	10	NONE	< 10	-	40	< 10	-

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number				2734333	2734334	2734335	2734336	2734337
Sample Reference				WS02	WS02	WS04	WS05	WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	3.70	0.60	0.60	3.50
Date Sampled				26/06/2023	26/06/2023	26/06/2023	26/06/2023	26/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Limit	A					
Analytical Parameter	_	it of	Accreditation Status					
(Soil Analysis)	Units	of detection	reditat Status					
		ecti	tion					
	<u> </u>	on	_					
VOCs		•	•		_			
Chloromethane	μg/kg 	5	ISO 17025	-	-	-	< 5.0	-
Chloroethane	μg/kg	5	NONE	-	-	-	< 5.0	-
Bromomethane	μg/kg	5 5	ISO 17025 NONE	-	-	-	< 5.0	-
Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg	5	NONE	-	-	-	< 5.0	-
1,1-dichloroethene	μg/kg	5	NONE	-	-	-	< 5.0 < 5.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	-	_	-	< 5.0	-
Trans 1,2-dichloroethylene	μg/kg	5	NONE		_		< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	-	-	< 5.0	-
1,1-dichloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
2,2-Dichloropropane	μg/kg	5	ISO 17025	-		-	< 5.0	-
Chloroform	μg/kg	5	NONE	-	-	-	< 5.0	-
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,2-dichloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Benzene	μg/kg	5	MCERTS	-	-	-	< 5.0	-
Carbontetrachloride	μg/kg	5	NONE	-	-	-	< 5.0	-
1,2-dichloropropane	μg/kg	5 5	ISO 17025 ISO 17025	-	-	-	< 5.0	-
Trichloroethene Dibromomethane	μg/kg μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Bromodichloromethane	μg/kg	5	ISO 17025	-	-	-	< 5.0 < 5.0	-
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025		-	<u> </u>	< 5.0	-
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	_	_	< 5.0	-
Toluene	μg/kg	5	MCERTS	-	_	-	< 5.0	-
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,3-Dichloropropane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Dibromochloromethane	μg/kg	5	ISO 17025	1	-	-	< 5.0	-
Tetrachloroethene	μg/kg	5	NONE	-	-	-	< 5.0	-
1,2-Dibromoethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Chlorobenzene	μg/kg 	5	ISO 17025	-	-	-	< 5.0	-
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Ethylbenzene	μg/kg	5 5	MCERTS MCERTS	-	-	-	< 5.0	-
p & m-xylene	μg/kg μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Styrene Bromoform	μg/kg	5	NONE	-	-	-	< 5.0 < 5.0	-
o-xylene	μg/kg	5	MCERTS	-	-		< 5.0	-
Isopropylbenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
Bromobenzene	μg/kg	5	NONE	-	-	-	< 5.0	-
N-Propylbenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
2-Chlorotoluene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
4-Chlorotoluene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,3,5-Trimethylbenzene	μg/kg "	5	ISO 17025	-	-	-	< 5.0	-
Tert-Butylbenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025 ISO 17025	-	-	-	< 5.0	-
Sec-Butylbenzene 1,3-dichlorobenzene	μg/kg μg/kg	5 5	ISO 17025 ISO 17025	-	-	-	< 5.0	-
1,3-dichlorobenzene P-Isopropyltoluene	μg/kg μg/kg	5	ISO 17025	-	-	-	< 5.0 < 5.0	-
1,4-dichlorobenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,2-dichlorobenzene	μg/kg	5	ISO 17025	-	-	<u> </u>	< 5.0	-
Butylbenzene	μg/kg	5	NONE		-		< 5.0	-
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
1,2,4-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
	μg/kg	5	NONE	-	_	_	< 5.0	-

Project / Site name: Great Bear, Link 56 Deeside

		000 1005	200 122 1	070 :555	200 : 200	200 / 200		
Lab Sample Number				2734333	2734334	2734335	2734336	2734337
Sample Reference				WS02	WS02	WS04	WS05	WS06
Sample Number				None Supplied 0.40	None Supplied 3.70	None Supplied 0.60	None Supplied 0.60	None Supplied 3.50
Depth (m) Date Sampled				0.40 26/06/2023	3./0 26/06/2023	26/06/2023	26/06/2023	3.50 26/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Time Taken		_		None Supplied	None Supplied	попе заррпеа	моне заррнеа	попе заррнеа
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2,3-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	-	< 5.0	-
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS MCERTS	-	-	-	< 0.2	-
Bis(2-chloroisopropyl)ether	mg/kg mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
2-Methylphenol Hexachloroethane	mg/kg	0.05	ISO 17025	-	-	-	< 0.3 < 0.05	-
Nitrobenzene	mg/kg	0.03	MCERTS	-	-	-	< 0.05	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	_	-	_	< 0.2	-
2-Nitrophenol	mg/kg	0.3	NONE	-	_	-	< 0.3	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	< 0.1	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	-	-	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	-	-	< 0.2	-
2-Methylnaphthalana	mg/kg mg/kg	0.1	NONE MCERTS	-	-	-	< 0.1	-
2-Chloronaphthalene Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	< 0.1 < 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE	-	-	-	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS		_	-	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	_	_	_	< 0.05	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE	_	_	-	< 0.2	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
4-Nitroaniline	mg/kg	0.2	NONE	-	-	-	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	0.07	-
Azobenzene	mg/kg	0.3	NONE	-	-	-	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	-
Phenanthrene	mg/kg	0.05	MCERTS MCERTS	-	-	-	0.18	-
Anthracene Carbazole	mg/kg mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Carbazole Dibutyl phthalate	mg/kg	0.3	NONE	<u>-</u>	-	-	< 0.3 < 0.2	-
Anthraquinone	mg/kg	0.2	NONE	-	-	-	< 0.2	-
Fluoranthene	mg/kg	0.05	MCERTS	<u>-</u>	-	-	0.07	-
Pyrene	mg/kg	0.05	MCERTS	_	_	-	0.05	-
Butyl benzyl phthalate	mg/kg	0.3	NONE	-	-	-	< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	-	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Lab Sample Number				2734333	2734334	2734335	2734336	2734337
Sample Reference				WS02	WS02	WS04	WS05	WS06
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.40	3.70	0.60	0.60	3.50
Date Sampled				26/06/2023	26/06/2023	26/06/2023	26/06/2023	26/06/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	< 0.05	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Speciated Total EPA-16 PAHs

Lab Sample Number				2734338	2734339	2734340	2734341	2734342
Sample Reference				WS07	WS07	WS09	WS12	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	3.70	0.25	0.20	0.60
Date Sampled				26/06/2023	26/06/2023	26/06/2023	28/06/2023	28/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ε.		None Supplied	топе заррнеа	топе заррнеа	топе заррнеа	Hone Supplied
		Limit of detection	Acc					
Analytical Parameter	Units	of c	Accreditation Status					
(Soil Analysis)	its	lete	itat					
		Ci ö	on on					
Chara Cartant	%	0.1	NONE	. 0.1	. 0.1	. 0.1	. 0.1	. 0.1
Stone Content Moisture Content	%	0.01	NONE	< 0.1 8.7	< 0.1 20	< 0.1 4.9	< 0.1 7.9	< 0.1 6.4
Total mass of sample received	kg	0.001	NONE	0.8	0.9	0.8	0.8	
Total mass of sample received	9	0.001		0.6	0.9	0.8	0.8	0.8
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	<u> </u>	Not-detected	Not-detected	Not-detected
Asbestos In Soli Asbestos Analyst ID	N/A	N/A	N/A	JBH	- N/A	JBH	JBH	JBH
ASDESTOS AlidiySt ID	.,,,	.,,,	.,,,,	JDII	N/A	JDII	JDII	JDII
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.6	-	8.4	9.6	8.7
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	%	0.005	MCERTS	0.021	-	0.022	0.125	0.031
Webs Celline Children as COA (Character (2.4)	,,	2.5	MCERTC	9.9	_	28	160	30
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	3.3			100	
Equivalent)	g/l	0.00125	MCERTS	0.0049	-	0.014	0.081	0.015
Water Soluble SO4 16hr extraction (2:1 Leachate	,,	4.05		4.9	_	14.1	81.3	15
Equivalent)	mg/l %	1.25	MCERTS					
Total Organic Carbon (TOC) - Automated	90	0.1	MCERTS	< 0.1	0.2	< 0.1	1.8	< 0.1
Total Planets								
Total Phenois	ma/ka	1	MCERTS					1.0
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Consisted PAUs								
Speciated PAHs	ma/lea	0.05	MCERTS	. 0.05	1	. 0.05	0.05	. 0.05
Naphthalene	mg/kg	0.05 0.05	MCERTS	< 0.05	-	< 0.05	0.05	< 0.05
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	0.1	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	0.25	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.1	-	< 0.05	0.23	0.05 0.12
Phenanthrene Anthracene	mg/kg	0.05	MCERTS	0.12 < 0.05	-	0.1 < 0.05	0.29	< 0.12
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	2.4	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	2.4	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	1.1	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	1.1	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	-	< 0.05	1.4	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	-	< 0.05	0.6	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	1.2	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	0.79	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	< 0.05	0.2	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	_	< 0.05	0.9	< 0.05
(3)		<u> </u>	<u> </u>	. 0.05	1	, 0.05	0.5	, 0.05
Total PAH								
S		0.0	ICO 1702E		•			

ISO 17025

< 0.80

< 0.80

13.8

mg/kg

0.8

< 0.80

Project / Site name: Great Bear, Link 56 Deeside

Sample Number	Lab Sample Number	2734338 2734339 2734340 27343			2734341	2734342			
Sample Number	•								
Depth (m) Dept	<u> </u>								
Time Taken									
Analytical Parameter Soil Analysis Soil Supplied None									
Analytical Parameter Section S	•								
Assente (aqua regia extractable)	Analytical Parameter (Soil Analysis)	Units	of St.		топе заррнеа	нопе варрнея	Hone Supplied	поле варрнеа	топе варрнеа
Cadmium (aqua regia extractable)	Heavy Metals / Metalloids								
Chromium (hexavalent)	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.7	-	5.7	12	5.3
Chromitum (aqua regia extractable)	Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	0.5	< 0.2
Copper (aqua regia extractable)	Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	-	< 1.2	< 1.2	< 1.2
Lead (aqua regia extractable)	Chromium (aqua regia extractable)	mg/kg	1	MCERTS	6.1	-	5.4	15	6.8
Mercury (aqua regia extractable)	Copper (aqua regia extractable)	mg/kg	1	MCERTS	4.9	-	4.8	16	6.6
Mickel (aqua regia extractable)	Lead (aqua regia extractable)	mg/kg	1	MCERTS	8.3	-	5.9	51	10
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 - < 1.0 < 1.0 < 1.0 < 1.0	Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	< 0.3
Selenium (aqua regia extractable)	Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.2	-	4.6	13	5.8
Monoaromatics & Oxygenates Monoaromatics & Oxygenates &	Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	< 1.0
Monoaromatics & Oxygenates Monoaromatics & Oxygenates & Oxygenates Monoaromatics & Oxygenates & Oxygenat	Zinc (agua regia extractable)	mg/kg	1	MCERTS	33	-	25	150	43
p & m-xylene	Monoaromatics & Oxygenates Benzene Toluene	μg/kg		MCERTS		-			
Description	Ethylbenzene	μg/kg	5	MCERTS	< 5.0	-	< 5.0	< 5.0	< 5.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6 _{HS ,ID ,AL} mg/kg 5 NONE < 5.0 - < 5.0 < 5.0 < 5.0 Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6 _{HS ,ID ,AL} mg/kg 0.001 NONE < 0.001	p & m-xylene	μg/kg	5	MCERTS	< 5.0	-	< 5.0	< 5.0	< 5.0
Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6 _{IPS, 1D, AL} mg/kg 0.001 NONE < 0.001	o-xylene	μg/kg	5	MCERTS	< 5.0 #	-	< 5.0	< 5.0 #	< 5.0 #
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	-	< 5.0	< 5.0	< 5.0
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	Petroleum Hydrocarbons TPH-CWG - Aliphatic > EC5 - EC6	ma/ka	0.001	NONE	< 0.001	_	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}									
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_ID_AL						_			
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_, CU_1D_,AL}						_			
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL mg/kg 8 MCERTS < 8.0									
TPH-CWG - Aliphatic > EC21 - EC35									
TPH-CWG - Aliphatic >EC35 - EC40									
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL									
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR}									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EM_CU+HS_ID_AL	3, 3	1		\ 10	_	\ 10	0/	\ 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TPH-CWG - Aromatic >EC5 - EC7 HE 15 AB	mg/kg	0.001	NONE	< 0.001	-	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 $_{HS_1D_AR}$ mg/kg 0.001 NONE < 0.001 - < 0.001 < 0.001 < 0.001 TPH-CWG - Aromatic >EC10 - EC12 $_{EH_CU_1D_AR}$ mg/kg 1 MCERTS < 1.0			0.001						
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR} mg/kg 1 MCERTS < 1.0 - < 1.0 < 1.0 < 1.0 TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR} mg/kg 2 MCERTS < 2.0 - < 2.0 4 < 2.0 TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR} mg/kg 10 MCERTS < 10 - < 10 20 < 10 TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR} mg/kg 10 MCERTS < 10 - < 10 160 < 10 TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR} mg/kg 10 NONE < 10 - < 10 88 < 10 TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU_1D_AR} mg/kg 10 NONE < 10 - < 10 180 < 10						_			
TPH-CWG - Aromatic > EC12 - EC16 $_{EH_{CU_1D_AR}}$ mg/kg 2 MCERTS < 2.0 - < 2.0 4 < 2.0 TPH-CWG - Aromatic > EC16 - EC21 $_{EH_{CU_1D_AR}}$ mg/kg 10 MCERTS < 10			1	MCERTS		-			
TPH-CWG - Aromatic > EC16 - EC21 _{EH_CU_1D_AR} mg/kg 10 MCERTS < 10 - < 10 20 < 10 TPH-CWG - Aromatic > EC21 - EC35 _{EH_CU_1D_AR} mg/kg 10 MCERTS < 10		mg/kg	2	MCERTS		-			
TPH-CWG - Aromatic > EC21 - EC35 _{EH_CU_1D_AR} mg/kg 10 MCERTS < 10 - < 10 160 < 10 TPH-CWG - Aromatic > EC35 - EC40 _{EH_CU_1D_AR} mg/kg 10 NONE < 10			10			-			
TPH-CWG - Aromatic >EC35 - EC40 _{EH_CU_1D_AR} mg/kg 10 NONE < 10 - < 10 88 < 10 TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR} mg/kg 10 NONE < 10			10	MCERTS					
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}			10			_			
			10			_			
THE STATE OF THE PARTY OF THE STATE OF THE S	TPH Total C5 - C40 _{EH_CU+HS_1D_TOTAL}	mg/kg	10		< 10	_	< 10	410	< 10

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number				2734338	2734339	2734340	2734341	2734342
Sample Reference				WS07	WS07	WS09	WS12	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	3.70	0.25	0.20	0.60
Date Sampled				26/06/2023	26/06/2023	26/06/2023	28/06/2023	28/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Limit	A					
Analytical Parameter	_	it of	Accreditation Status					
(Soil Analysis)	Units	det	reditat Status					
		detection	tion					
		on						
VOCs								
Chloromethane	μg/kg 	5	ISO 17025	-	-	< 5.0	-	-
Chloroethane	μg/kg	5	NONE	-	-	< 5.0	-	-
Bromomethane	μg/kg	5 5	ISO 17025 NONE	-	-	< 5.0	-	-
Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg	5	NONE	-	-	< 5.0	-	-
1,1-dichloroethene	μg/kg μg/kg	5	NONE	-	-	< 5.0 < 5.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	_		< 5.0	_	
Trans 1,2-dichloroethylene	μg/kg	5	NONE	-	-	< 5.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	-	< 5.0	-	-
1,1-dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
2,2-Dichloropropane	μg/kg	5	ISO 17025	-		< 5.0	-	-
Chloroform	μg/kg	5	NONE	-	-	< 5.0	-	-
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,2-dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Benzene Carlo artetro ablacida	μg/kg	5 5	MCERTS NONE	-	-	< 5.0	-	-
Carbontetrachloride 1,2-dichloropropane	μg/kg μg/kg	5	ISO 17025	-	-	< 5.0 < 5.0	-	-
Trichloroethene	μg/kg μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Dibromomethane	μg/kg	5	ISO 17025	-		< 5.0	_	
Bromodichloromethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Toluene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,3-Dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Dibromochloromethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Tetrachloroethene	μg/kg 	5	NONE	-	-	< 5.0	-	-
1,2-Dibromoethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Chlorobenzene	μg/kg μg/kg	5 5	ISO 17025 ISO 17025	-	-	< 5.0	-	-
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg μg/kg	5	MCERTS	-	-	< 5.0 < 5.0	-	-
p & m-xylene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
Styrene	μg/kg	5	ISO 17025	_	_	< 5.0	_	_
Bromoform	μg/kg	5	NONE	-	-	< 5.0	-	-
o-xylene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
Isopropylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Bromobenzene	μg/kg	5	NONE	-	-	< 5.0	-	-
N-Propylbenzene	μg/kg "	5	ISO 17025	-	-	< 5.0	-	-
2-Chlorotoluene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
4-Chlorotoluene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,3,5-Trimethylbenzene	μg/kg	5 5	ISO 17025 ISO 17025	-	-	< 5.0	-	-
Tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg μg/kg	5	ISO 17025	-	-	< 5.0 < 5.0	-	-
Sec-Butylbenzene	μg/kg μg/kg	5	ISO 17025	-	-	< 5.0 < 5.0	-	-
1,3-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
P-Isopropyltoluene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,4-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,2-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
Butylbenzene	μg/kg	5	NONE	-	-	< 5.0	-	-
,								
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	-	-	< 5.0	-	-
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene	µg/kg µg/kg µg/kg	5 5 5	ISO 17025 ISO 17025 NONE	-	-	< 5.0 < 5.0	-	-

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number				2734338	2734339	2734340	2734341	2734342
Sample Reference				WS07	WS07	WS09	WS12	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	3.70	0.25	0.20	0.60
Date Sampled				26/06/2023	26/06/2023	26/06/2023	28/06/2023	28/06/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2,3-Trichlorobenzene	µg/kg	5	ISO 17025	-	-	< 5.0	-	-
SVOCs								
Aniline	mg/kg	0.1	NONE	-	-	< 0.1	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS MCERTS	-	-	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg mg/kg	0.1	MCERTS	-	-	< 0.1 < 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Hexachloroethane	mg/kg	0.05	ISO 17025	-	-	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	NONE	-	-	< 0.3	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Naphthalene	mg/kg	0.05	MCERTS MCERTS	-	-	< 0.05	-	-
2,4-Dichlorophenol	mg/kg mg/kg	0.3	NONE	-	-	< 0.3	-	-
4-Chloroaniline Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1 < 0.1		-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-		< 0.1	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	_	_	< 0.1	-	_
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	-	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	NONE	-	-	< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
2,4-Dinitrotoluene	mg/kg	0.2	NONE	-	-	< 0.2	-	-
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	< 0.2 < 0.3	-	-
4-Chlorophenyl phenyl ether Diethyl phthalate	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
4-Nitroaniline	mg/kg	0.2	NONE	-	-	< 0.2	<u>-</u>	-
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05		-
Azobenzene	mg/kg	0.3	NONE	-	-	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	0.1	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	NONE	-	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	NONE	-	-	< 0.3	-	-
Fluoranthene	mg/kg	0.05 0.05	MCERTS MCERTS	-	-	< 0.05	-	-
Pyrene Rutyl honzyl obthalate	mg/kg mg/kg	0.05	NONE	-	<u>-</u>	< 0.05	<u>-</u>	-
Butyl benzyl phthalate Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.3 < 0.05		-
Chrysene	mg/kg	0.05	MCERTS	-		< 0.05		-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	< 0.05		-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Lab Sample Number				2734338	2734339	2734340	2734341	2734342
Sample Reference			WS07	WS07	WS09	WS12	WS13	
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.60	3.70	0.25	0.20	0.60
Date Sampled				26/06/2023	26/06/2023	26/06/2023	28/06/2023	28/06/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Speciated Total EPA-16 PAHs

Lab Sample Number				2734343	2734344	2734345
Sample Reference				WS14	WS15	WS16
Sample Number				None Supplied	None Supplied	None Supplie
Depth (m)				0.40	0.10	0.10
Date Sampled				28/06/2023	27/06/2023	27/06/2023
Time Taken				None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	55	< 0.1
Moisture Content	%	0.01	NONE	7.9	9.4	9.6
Total mass of sample received	kg	0.001	NONE	0.8	0.8	0.8
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	JBH	JBH	JBH
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	9.5	7.8	7.7
Fotal Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Fotal Sulphate as SO4	%	0.005	MCERTS	0.212	0.038	0.047
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	490	17	31
Equivalent)	g/l	0.00125	MCERTS	0.25	0.0085	0.016
Nater Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	247	8.5	15.5
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.1	1.8	2.8
Fotal Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
rotal Friends (monorlythic)	5, 5			< 1.0	< 1.0	< 1.0
Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS MCERTS	0.11	0.14	0.22
Fluorene	mg/kg	0.05	MCERTS	0.11	0.13	0.25
Phenanthrene	mg/kg	0.05		0.33	0.27	0.57
Anthracene	mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.43	0.09	0.13
Pyrene	mg/kg mg/kg	0.05	MCERTS	0.35 0.12	0.05 < 0.05	0.09 < 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.12	< 0.05 < 0.05	< 0.05 0.06
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.16	< 0.05 < 0.05	0.06
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.09	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Series (Am) here	5, 5	<u> </u>	_	\ 0.03	V 0.03	₹ 0.03
Total PAH						
Constituted FDA 4C DALLS	ma/ka	no	ISO 17025	4 0 7		4 20

ISO 17025

1.87

< 0.80

1.38

mg/kg

0.8

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Lab Sample Number				2734343	2734344	2734345
Sample Reference				WS14	WS15	WS16
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.10	0.10
Date Sampled				28/06/2023	27/06/2023	27/06/2023
Time Taken				None Supplied	None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	7	7.3	6.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	< 0.2	0.3
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	< 1.2	< 1.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	9.9	36	20
Copper (aqua regia extractable)	mg/kg	1	MCERTS	30	18	25
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	30	37
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.4	0.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	7.4	34	15
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	70	76
Monoaromatics & Oxygenates	•					
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Talvana	ua/ka	и	MCEDTS			

Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
p & m-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	< 5.0
o-xylene	μg/kg	5	MCERTS	< 5.0 #	< 5.0 #	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	< 5.0	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC35 - EC40 EH_CU_1D_AL	mg/kg	10	NONE	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH-CWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10	< 10
TPH Total C5 - C40 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	< 10	< 10	< 10

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number	2734343	2734344	2734345			
Sample Reference	WS14	WS15	WS16			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.40	0.10	0.10			
Date Sampled				28/06/2023	27/06/2023	27/06/2023
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
VOCs						
Chloromethane	μg/kg	5	ISO 17025	-	-	< 5.0
Chloroethane	μg/kg	5	NONE	-	-	< 5.0
Bromomethane	μg/kg	5	ISO 17025	-	-	< 5.0
Vinyl Chloride	μg/kg	5	NONE			< 5.0
Trichlorofluoromethane	μg/kg	5	NONE	•	•	< 5.0
1,1-dichloroethene	μg/kg	5	NONE	-	•	< 5.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	5	NONE	-	•	< 5.0
Trans 1,2-dichloroethylene	μg/kg	5	NONE	-	-	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	-	< 5.0
1,1-dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
2,2-Dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0
Chloroform	μg/kg	5	NONE	-	-	< 5.0
1,1,1-Trichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
1,2-dichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
1,1-Dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0
Cis-1,2-dichloroethene	μg/kg	5	ISO 17025	-	-	< 5.0
Benzene	μg/kg	5	MCERTS	-	-	< 5.0
Carbontetrachloride	μg/kg	5	NONE	-	-	< 5.0
1,2-dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0
Trichloroethene	μg/kg	5	ISO 17025	-	-	< 5.0
Dibromomethane	μg/kg	5	ISO 17025	-	-	< 5.0
Bromodichloromethane	μg/kg	5	ISO 17025	-	-	< 5.0
Cis-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0
Trans-1,3-dichloropropene	μg/kg	5	ISO 17025	-	-	< 5.0
Toluene	μg/kg	5	MCERTS	-	-	< 5.0
1,1,2-Trichloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
1,3-Dichloropropane	μg/kg	5	ISO 17025	-	-	< 5.0
Dibromochloromethane	μg/kg	5	ISO 17025	-	-	< 5.0
Tetrachloroethene	μg/kg	5	NONE	-	-	< 5.0
1,2-Dibromoethane	μg/kg	5	ISO 17025	-	-	< 5.0
Chlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
1,1,1,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	-	-	< 5.0
p & m-xylene	μg/kg	5	MCERTS	-	-	< 5.0
Styrene	μg/kg	5	ISO 17025	-	-	< 5.0
Bromoform	μg/kg	5	NONE	-	-	< 5.0
o-xylene	μg/kg	5	MCERTS	-	-	< 5.0
Isopropylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
1,1,2,2-Tetrachloroethane	μg/kg	5	ISO 17025	-	-	< 5.0
Bromobenzene	μg/kg	5	NONE	-	-	< 5.0
N-Propylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
2-Chlorotoluene	μg/kg	5	ISO 17025	-	-	< 5.0
4-Chlorotoluene	μg/kg	5	ISO 17025	-	-	< 5.0
1,3,5-Trimethylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
Tert-Butylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
1,2,4-Trimethylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
Sec-Butylbenzene	μg/kg	5	ISO 17025	-	-	< 5.0
1,3-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
P-Isopropyltoluene	μg/kg	5	ISO 17025	-	-	< 5.0
1,4-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
1,2-dichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
Butylbenzene	μg/kg	5	NONE	-	-	< 5.0
1,2-Dibromo-3-chloropropane	μg/kg	5	ISO 17025	-	-	< 5.0
1,2,4-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
Hexachlorobutadiene	μg/kg	5	NONE	-	-	< 5.0

Project / Site name: Great Bear, Link 56 Deeside

Lab Sample Number				2734343	2734344	2734345
Sample Reference				WS14	WS15	WS16
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)	0.40	0.10	0.10			
Date Sampled	28/06/2023	27/06/2023	27/06/2023			
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
1,2,3-Trichlorobenzene	μg/kg	5	ISO 17025	-	-	< 5.0
SVOCs						
Aniline	mg/kg	0.1	NONE	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	1	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	ISO 17025	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS NONE	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	MCERTS	-	-	< 0.2
Isophorone	mg/kg mg/kg	0.2	NONE	-	-	< 0.2 < 0.3
2-Nitrophenol 2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS			< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_		< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	_	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	_	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	NONE	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	NONE	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-		< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	NONE	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	0.22
2,4-Dinitrotoluene	mg/kg	0.2	NONE	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	MCERTS	-	-	< 0.3
Diethyl phthalate	mg/kg mg/kg	0.2	MCERTS NONE	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	< 0.2
Fluorene Azobenzene	mg/kg	0.03	NONE	<u>-</u>	-	0.25 < 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	_	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	-	0.57
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	NONE	-	-	< 0.2
Anthraquinone	mg/kg	0.3	NONE	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	-	0.13
Pyrene	mg/kg	0.05	MCERTS	-		0.09
Butyl benzyl phthalate	mg/kg	0.3	NONE	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	-	0.06
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	-	-	0.06
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Lab Sample Number	2734343	2734344	2734345			
Sample Reference	WS14	WS15	WS16			
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.40	0.10	0.10
Date Sampled	28/06/2023	27/06/2023	27/06/2023			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

4041

Analytical Report Number: 23-42707

Project / Site name: Great Bear, Link 56 Deeside

Your Order No: 2255

Your Order No: 2255							
Lab Sample Number			2734346	2734347	2734348	2734349	
Sample Reference				WS05	WS09	WS14	WS16
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.60	0.25	0.40	0.10
Date Sampled			26/06/2023	27/06/2023	28/06/2023	27/06/2023	
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
General Inorganics							
pH (automated)	pH Units	N/A	ISO 17025	8.7	8.2	8.3	7.9
Speciated PAHs							
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH		0.2	NONE				
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2
Heavy Metals / Metalloids	1	_	100 1700				
Arsenic (dissolved)	μg/l	1	ISO 17025	6	4.7	4.3	3.4
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	< 5.0	< 5.0	< 5.0
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.2	2.3	0.9	0.8
Copper (dissolved)	μg/l "	0.7	ISO 17025	13	15	17	21
Lead (dissolved)	µg/l	1	ISO 17025	14	4.7	3	1.1
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	0.3	1.2	0.4	1
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0
Zinc (dissolved)	μg/l	0.4	ISO 17025	24	19	10	3.9

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Project / Site name: Great Bear, Link 56 Deeside

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
2734333	WS02	None Supplied	0.4	Light brown sand.	
2734334	WS02	None Supplied	3.7	Brown sandy clay.	
2734335	WS04	None Supplied	0.6	Brown sand.	
2734336	WS05	None Supplied	0.6	Brown sand with clinker.	
2734337	WS06	None Supplied	3.5	Brown sand.	
2734338	WS07	None Supplied	0.6	Brown sand.	
2734339	WS07	None Supplied	3.7	Brown sand.	
2734340	WS09	None Supplied	0.25	Brown sand.	
2734341	WS12	None Supplied	0.2	Brown sand with gravel and brick.	
2734342	WS13	None Supplied	0.6	Brown sand.	
2734343	WS14	None Supplied	0.4	Brown sand with gravel.	
2734344	WS15	None Supplied	0.1	Brown sandy loam with vegetation and stones.	
2734345	WS16	None Supplied	0.1	Brown sandy loam with gravel and vegetation.	

Project / Site name: Great Bear, Link 56 Deeside

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL		MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Hexavalent chromium in leachate	Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate (automated)	Determination of pH in leachate by electrometric measurement.	In house method.	L099B	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

Project / Site name: Great Bear, Link 56 Deeside

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

Project / Site name: Great Bear, Link 56 Deeside

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

^{# -} Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

Project / Site name: Great Bear, Link 56 Deeside

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS02	None Supplied	S	2734333	С	Free cyanide in soil	L080-PL	С
WS02	None Supplied	S	2734333	С	Total cyanide in soil	L080-PL	С
WS04	None Supplied	S	2734335	С	Free cyanide in soil	L080-PL	С
WS04	None Supplied	S	2734335	С	Total cyanide in soil	L080-PL	С
WS05	None Supplied	S	2734336	С	Free cyanide in soil	L080-PL	С
WS05	None Supplied	S	2734336	С	Total cyanide in soil	L080-PL	С
WS07	None Supplied	S	2734338	С	Free cyanide in soil	L080-PL	С
WS07	None Supplied	S	2734338	С	Total cyanide in soil	L080-PL	С
WS09	None Supplied	S	2734340	С	Free cyanide in soil	L080-PL	С
WS09	None Supplied	S	2734340	С	Total cyanide in soil	L080-PL	С

Omar Dalvai Patrick Parson□ 40 St. Paul's Square Birmingham

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green B3 1FQ Business Park, Watford, Herts, **WD18 8YS**

> **t:** 01923 225404 **f:** 01923 237404

e: Patrick Parsons e: reception@i2analytical.com

Analytical Report Number: 23-43687

Project / Site name: Great Bear Deeside **Samples received on:** 07/07/2023

Your job number: 10579 Samples instructed on/ 07/07/2023

Analysis started on:

Your order number: Analysis completed by: 19/07/2023

Report Issue Number: Report issued on: 20/07/2023 1

Samples Analysed: 4 soil samples

Signed:

Anna Goc PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

> leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-43687 Project / Site name: Great Bear Deeside

Lab Sample Number		2739804	2739805	2739806	2739807		
Sample Reference				WS07	WS09	WS10	WS05
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.70	1.60	1.60
Date Sampled				06/07/2023	06/07/2023	06/07/2023	06/07/2023
Time Taken				1700	1700	1700	1700
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	8	5.1	11	6
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.3	0.3

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.9	8	8.9	9
Equivalent)	g/l	0.00125	MCERTS	0.0041	0.042	0.0081	0.028

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number: 23-43687 Project / Site name: Great Bear Deeside

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2739804	WS07	None Supplied	1.8	Brown sandy clay.
2739805	WS09	None Supplied	0.7	Brown sandy clay with gravel.
2739806	WS10	None Supplied	1.6	Brown sandy clay.
2739807	WS05	None Supplied	1.6	Brown sandy clay.

Analytical Report Number: 23-43687
Project / Site name: Great Bear Deeside

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

GEOLABS Limited □ Unit D3 HRS Business Park□ Granby Avenue □ Birmingham B33 0SJ

Tel: +44(0) 121 296 4600 Fax: +44(0) 121 296 4599 email: admin@geolabs.co.uk web: www.geolabs.co.uk

20 July 2023

Report No: GEO/38413/01

Page 1 of 1

Date samples received

06/07/2023

06/07/2023

Date written instructions received Date testing commenced

07/07/2023

Our ref GEO / 38413 Your Ref 10579

Date of sample disposal

17/08/2023

Project

Patrick Parsons

Birmingham

B3 1FQ

40 St Pauls Square

For the attention of

GREAT BEAR, DEESIDE

Mr O Dalvai

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

LABORATORY TEST REPORT

Item No	Test Quantity	Description
1	6	California Bearing Ratio

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory. The results reported are applicable only to the test items received by the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of GEOLABS Limited

CALIFORNIA BEARING RATIO

LocationWS04Depth (m)0.70Sample TypeB

Description:

Brown SAND with much fine to coarse gravel.

Material > 20 mm removed as advised by client.

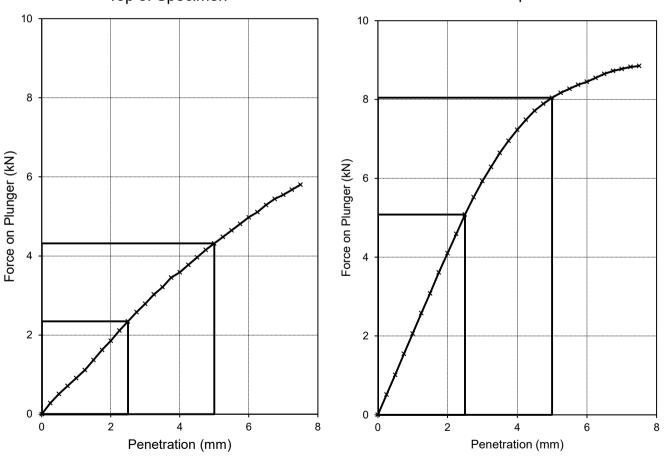
PREPARATION DETAILS

The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.80 Mg/m³


Prepared dry density 1.69 Mg/m³

31.3 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base	
Surcharge	8.0 kg	8.0 kg	
Seating load	50 N	50 N	
Water content	6.7 %	6.8 %	
CBR Value	22 %	40 %	

Top of Specimen

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director

Project Name:

GEO / 38413

GREAT BEAR, DEESIDE 10579

Project Number:

CALIFORNIA BEARING RATIO

LocationWS12Depth (m)0.70Sample TypeB

Description:

Light brown SAND with rare fine to coarse gravel.

PREPARATION DETAILS

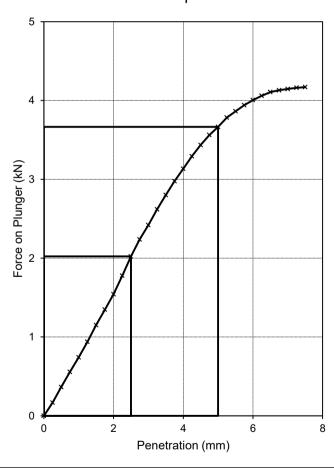
The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.63 Mg/m³

Prepared dry density 1.54 Mg/m³


2.4 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base	
Surcharge	8.0 kg	8.0 kg	
Seating load	50 N	50 N	
Water content	5.9 %	6.6 %	
CBR Value	7.3 %	18 %	

Top of Specimen

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director□

Project Number:

Project Name:

GEO / 38413

CALIFORNIA BEARING RATIO

LocationWS15Depth (m)0.80Sample TypeB

Description:

Brown SAND with some fine to coarse gravel.

PREPARATION DETAILS

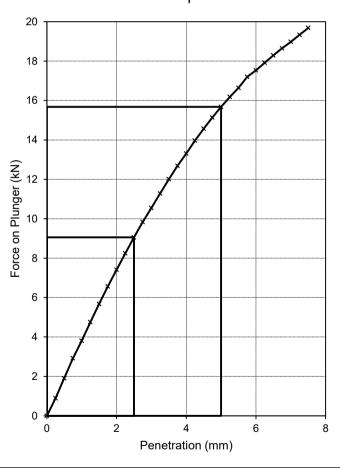
The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.99 Mg/m³

Prepared dry density 1.84 Mg/m³


23.4 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base			
Surcharge	8.0 kg	8.0 kg			
Seating load	50 N	50 N			
Water content	8.1 %	8.0 %			
CBR Value	34 %	78 %			

Top of Specimen

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director

Project Number:

Project Name:

GEO / 38413

CALIFORNIA BEARING RATIO

WS16 Location Depth (m) 0.40 Sample Type

Description:

Brown SAND with rare fine to coarse gravel.

PREPARATION DETAILS

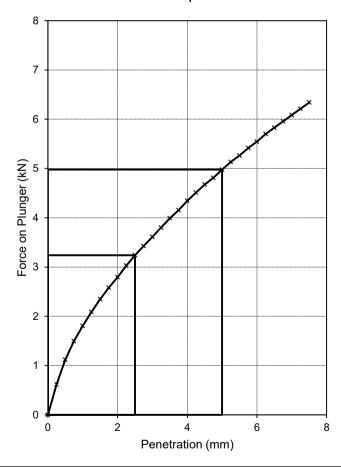
The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.82 Mg/m³

Prepared dry density 1.68 Mg/m³


14.5 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base			
Surcharge	8.0 kg	8.0 kg			
Seating load	50 N	50 N			
Water content	8.6 %	8.3 %			
CBR Value	27 %	25 %			

Top of Specimen

8 7 6 Force on Plunger (kN) 2 1 2 Penetration (mm)

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director

Project Name:

Project Number:

GEO / 38413

CALIFORNIA BEARING RATIO

Location WS17
Depth (m) 0.50
Sample Type B

Description:

Dark brown SAND with some fine to coarse gravel.

PREPARATION DETAILS

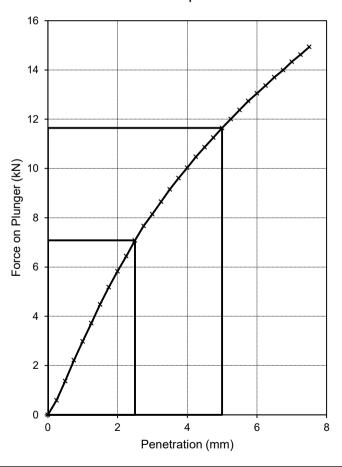
The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 1.98 Mg/m³

Prepared dry density 1.80 Mg/m³


4.4 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base			
Surcharge	8.0 kg	8.0 kg			
Seating load	50 N	50 N			
Water content	10 %	9.8 %			
CBR Value	44 %	58 %			

Top of Specimen

16 14 12 12 10 10 4 2 4 Penetration (mm)

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director

Project Name:

GEO / 38413

GREAT BEAR, DEESIDE 10579

GL Version 38.230218-1441

Project Number:

CALIFORNIA BEARING RATIO

Location WS18
Depth (m) 0.90
Sample Type B

Description:

Brown SAND with fine to coarse gravel.

PREPARATION DETAILS

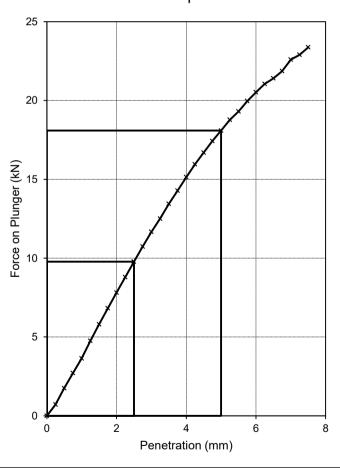
The specimen was tested in an unsoaked condition.

The specimen was tested at the as received water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.06 Mg/m³

Prepared dry density 1.95 Mg/m³


7.4 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base				
Surcharge	8.0 kg	8.0 kg				
Seating load	50 N	50 N				
Water content	5.4 %	5.5 %				
CBR Value	69 %	90 %				

Top of Specimen

25 20 (Ny) 15 15 0 0 2 4 6 8 Penetration (mm)

Base of Specimen

Tested by DF□ Checked and Approved by

J A Reynolds - Director

Project Name:

Project Number:

GEO / 38413

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Patrick Parson Client:

Client Address: 40 St. Paul's Square, Birmingham,

B3 1FQ

Contact: Omar Dalvai Site Address: Great Bear Deeside

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 10579

Job Number: 23-43686-1 Date Sampled: 06/07/2023 Date Received: 07/07/2023

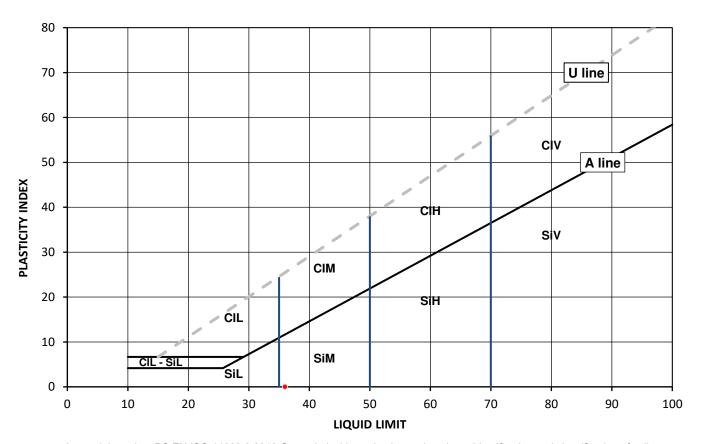
Date Tested: 14/07/2023

Sampled By: Client - OMD

Depth Top [m]: 3.90

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2739802 WS05 Hole No.: Sample Reference: Not Given

Sample Description: Grey slightly clayey SAND

Tested in natural condition Sample Preparation:

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
24	36	NP	NP	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Low below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks: NP - non plastic

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 25/07/2023

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Patrick Parson

Client Address: 40 St. Paul's Square, Birmingham,

B3 1FQ

Contact: Omar Dalvai Site Address: Great Bear Deeside

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 10579

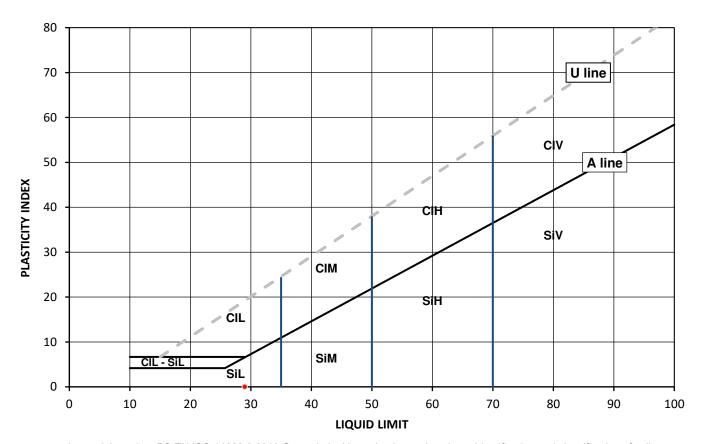
Job Number: 23-43686-1 Date Sampled: 06/07/2023 Date Received: 07/07/2023

Date Tested: 14/07/2023

Sampled By: Client - OMD

Test Results:

Laboratory Reference: 2739803 WS10 Hole No.: Sample Reference: Not Given


Sample Description: Brown slightly clayey SAND

Sample Preparation: Tested in natural condition

Depth Top [m]:	2.70
Depth Base [m]:	Not Given

Sample Type: D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
24	29	NP	NP	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit CI Clay L Low below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks: NP - non plastic

Signed:

Katarzyna Koziel Reporting Specialist

Date Reported: 25/07/2023

Kozies Page 1 of 1 for and on behalf of i2 Analytical Ltd

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Contact:

Client Address:

Client: Patrick Parson

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

40 St. Paul's Square, Birmingham, B3 1FQ

Omar Dalvai

Site Address: Great Bear Deeside

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: 10579

Job Number: 23-43686-1

Date Sampled: 06/07/2023
Date Received: 07/07/2023

Date Tested: 14/07/2023 Sampled By: Client - OMD

Test results

			Sample	e				tent W]	ontent 17892-1		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water Conf BS EN ISO 17 [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2739802	WS05	Not Given	3.90	Not Given	D	Grey slightly clayey SAND	Atterberg 1 Point	24		100	36	NP	NP					
2739803	WS10	Not Given	2.70	Not Given	D	Brown slightly clayey SAND	Atterberg 1 Point	24		100	29	NP	NP					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Kata ay na Koziej Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 25/07/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 234.16

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 10579

Job Number: 23-43686-1 Date Sampled: 06/07/2023

Date Received: 07/07/2023

Date Tested: 14/07/2023 Sampled By: Client - OMD

4041

Client: Patrick Parson

Client Address:

40 St. Paul's Square, Birmingham,

B3 1FQ

Omar Dalvai Contact:

Site Address: Great Bear Deeside

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

_		•						1			
		Sample									
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2739802	WS05	Not Given	3.90	Not Given	D	Grey slightly clayey SAND		24	Sample was quartered, oven dried at 109 °C		
2739803	WS10	Not Given	2.70	Not Given	D	Brown slightly clayey SAND		24	Sample was quartered, oven dried at 109 °C		

Comments:

Signed:

Kata ay na Koziej

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Page 1 of 1

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written

GF 099.17 **Date Reported:** 25/07/2023

Appendix D
Online Hazwaste results

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

10579 - Great Bear, Deeside

Description/Comments

Project

10579 - Great Bear, Deeside

Site

Great Bear, Deeside

Classified by

Name: **Hugh Adler** Company:

40 St Pauls Square Date:

26 Jul 2023 08:46 GMT

Telephone: 0)121 592 0000

PPCP Ltd t/a Patrick Parsons

Birmingham

B3 1FQ

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Course

Hazardous Waste Classification

Date 10 Feb 2022

Next 3 year Refresher due by Feb 2025

Purpose of classification

2 - Material Characterisation

Address of the waste

Great Bear, Deeside Post Code CH5 2LL

SIC for the process giving rise to the waste

41201 Construction of commercial buildings

Description of industry/producer giving rise to the waste

Development of commercial buildings on undeveloped land.

Description of the specific process, sub-process and/or activity that created the waste

Waste created during the excavation of service and foundation runs.

Description of the waste

Made ground and natural soils comprising slightly silty sand.

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS02	0.40	Non Hazardous		3
2	WS04	0.60	Non Hazardous		5
3	WS05	0.60	Non Hazardous		7
4	WS07	0.60	Non Hazardous		9
5	WS09	0.25	Non Hazardous		11
6	WS12	0.20	Non Hazardous		13
7	WS13	0.60	Non Hazardous		15
8	WS14	0.40	Non Hazardous		17
9	WS15	0.10	Non Hazardous		19
10	WS16	0.10	Non Hazardous		21

Related documents

# Name	Description
1 PP Standard Suite	waste stream template used to create this Job

Report

Created by: Hugh Adler

Created date: 26 Jul 2023 08:46 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	23
Appendix B: Rationale for selection of metal species	24
Appendix C: Version	24

Page 2 of 25 OCKFL-QFNM0-TYR5X www.hazwasteonline.com

Classification of sample: WS02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS02 Chapter: Sample Depth: 0.40 m Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

from contaminated sites)

Moisture content: 4.1%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 4.1% No Moisture Correction applied (MC)

								_	
#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		9.2 pH		9.2 pH	9.2 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		5.9 mg/kg	1.32	7.79 mg/kg	0.000779 %		
3	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		5.6 mg/kg	1.462	8.185 mg/kg	0.000818 %		
5	4	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		5.3 mg/kg	3.929	20.824 mg/kg	0.00208 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	5.4 mg/kg	1.56	8.423 mg/kg	0.00054 %		
7	4	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		4.7 mg/kg	2.976	13.988 mg/kg	0.0014 %		
9	«	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8							
10		zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		18 mg/kg	2.774	49.935 mg/kg	0.00499 %		
11	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	-						
12	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	0	acenaphthene 201-469-6 83-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracen				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
-			200-280-6	56-55-3	+					\vdash	
17		benzo[a]pyrene; be 601-032-00-3		F0 00 0	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
		benzo[b]fluoranthe	200-028-5	50-32-8	+					\vdash	
18			205-911-9	205-99-2	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
-		benzo[ghi]perylene		200 00 2	\vdash					Н	
19		10 11 /	205-883-8	191-24-2	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[k]fluoranthe	ne			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %	T	<lod< th=""></lod<>
		601-036-00-5	205-916-6	207-08-9		C0.05 Hig/kg		<0.05 Hig/kg	<0.000003 78		LOD
21		chrysene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-923-4	218-01-9		0 0					
22		dibenz[a,h]anthrac				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
-			200-181-8	53-70-3	_						
23	•	fluoranthene	DOE 040 4	000 44 0		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
-			205-912-4	206-44-0	+						
24	•	fluorene	201-695-5	86-73-7	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
		indeno[123-cd]pyre		00-73-7	+					Н	
25			205-893-2	193-39-5	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
26	0	phenanthrene	L	1		.0.0E ma/lea		.0.0F ma/km	-0.00000E 9/	Т	1.00
26			201-581-5	85-01-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
27		naphthalene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ		601-052-00-2	202-049-5	91-20-3		20.00 mg/ng		111g/11g	10.000000 70		100
28	0	pyrene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
			204-927-3	129-00-0					0.0101.0/		
								Total:	0.0121 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS04 Chapter: Sample Depth: 0.60 m

Entry:

Moisture content:

5.7%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 5.7% No Moisture Correction applied (MC)

#		Determinand EU CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		10.3 pH		10.3 pH	10.3 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		8 mg/kg	1.32	10.563 mg/kg	0.00106 %		
3	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	0.4 mg/kg	1.285	0.514 mg/kg	0.00004 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		15 mg/kg	1.462	21.923 mg/kg	0.00219 %		
5	4	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		23 mg/kg	3.929	90.368 mg/kg	0.00904 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	35 mg/kg	1.56	54.594 mg/kg	0.0035 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7		12 mg/kg	2.976	35.715 mg/kg	0.00357 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>
	_	034-002-00-8	-						
10	≪*	zinc { zinc chromate } 024-007-00-3	-	170 mg/kg	2.774	471.605 mg/kg	0.0472 %		
11	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	-						
12	0	TPH (C6 to C40) petroleum group		40 mg/kg		40 mg/kg	0.004 %		
13	0	acenaphthene 201-469-6 83-32-9		0.15 mg/kg		0.15 mg/kg	0.000015 %		
14	0	acenaphthylene 205-917-1 208-96-8		0.11 mg/kg		0.11 mg/kg	0.000011 %		
15	0	anthracene 204-371-1 120-12-7		0.16 mg/kg		0.16 mg/kg	0.000016 %		

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered o	data	Conv. Factor	Compound	I conc.	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracene				0.6 n	ng/kg		0.6	mg/kg	0.00006 %		
		601-033-00-9	200-280-6	56-55-3		0.0				9/1.19			
17		benzo[a]pyrene; be	nzo[def]chrysene			0.61 n	ng/kg		0.61	mg/kg	0.000061 %		
.,		601-032-00-3	200-028-5	50-32-8		0.01	ng/ng				0.000001 70		
18		benzo[b]fluoranther	ne			0.74 n	ng/kg		0.74	mg/kg	0.000074 %		
		601-034-00-4	205-911-9	205-99-2		U.							
19	0	benzo[ghi]perylene	205-883-8	191-24-2		0.49 n	ng/kg		0.49	mg/kg	0.000049 %		
20		benzo[k]fluoranther		131-24-2		0.34 n	ng/kg		0.34	mg/kg	0.000034 %		
		601-036-00-5	205-916-6	207-08-9		0.0 .					0.00000 . 70		
21		chrysene	205 200 4	10.1.0.0.1.0		0.61 n	ng/kg		0.61	mg/kg	0.000061 %		
		-	205-923-4	218-01-9	+							\vdash	
22		dibenz[a,h]anthrace				0.1 n	ng/kg		0.1	mg/kg	0.00001 %		
-			200-181-8	53-70-3	+							Н	
23	0	fluoranthene				1.1 n	ng/kg		1.1	mg/kg	0.00011 %		
			205-912-4	206-44-0	+							\vdash	
24	0	fluorene	201-695-5	86-73-7	-	0.18 n	ng/kg		0.18	mg/kg	0.000018 %		
	0	indeno[123-cd]pyre			T							\vdash	
25			205-893-2	193-39-5	1	0.48 n	ng/kg		0.48	mg/kg	0.000048 %		
26	0	phenanthrene				0.6 n	ng/kg		0.6	mg/kg	0.00006 %		
			201-581-5	85-01-8			3 -9					Ш	
27		naphthalene	000 040 5	01.00.0		<0.05 n	ng/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			202-049-5	91-20-3	+								
28	0	pyrene	204-927-3	129-00-0	-	1 n	ng/kg		1	mg/kg	0.0001 %		
			204-927-3 129-00-0							Total:	0.0717 %	\top	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product hydrocarbons recorded during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.004%)

Page 6 of 25 0CKFL-QFNM0-TYR5X www.hazwasteonline.com

Classification of sample: WS05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS05 Chapter: Sample Depth: 0.60 m

Entry:

Moisture content:

3.9%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 3.9% No Moisture Correction applied (MC)

	Г							-	
#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
_	8	number pH						_	
1		PH		9.6 pH		9.6 pH	9.6 pH		
2	ď	arsenic { arsenic trioxide }		6.9 mg/kg	1.32	9.11 mg/kg	0.000911 %		
		033-003-00-0 215-481-4 1327-53-3	_						
3	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		11 mg/kg	1.462	16.077 mg/kg	0.00161 %		
5	æ\$	copper { copper sulphate pentahydrate }	H	24 mg/kg	3.929	94.297 mg/kg	0.00943 %		
		029-023-00-4 231-847-6 7758-99-8			0.000				
6	æ \$	lead { lead chromate } 082-004-00-2	1	25 mg/kg	1.56	38.995 mg/kg	0.0025 %		
7	æ å	mercury { mercury dichloride }		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
	_	080-010-00-X 231-299-8 7487-94-7	-						
8	æ Ç	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7	-	5.2 mg/kg	2.976	15.477 mg/kg	0.00155 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8							
10	4	zinc { zinc chromate }		53 mg/kg	2.774	147.03 mg/kg	0.0147 %		
		024-007-00-3 236-878-9 13530-65-9							
11	æ	chromium in chromium(VI) compounds { $\frac{\text{chromium(VI)}}{\text{oxide}}$ }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	L						
12	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
		TPH	\vdash						
13	0	acenaphthene 201-469-6 83-32-9	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
14	0	acenaphthylene		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
15	0	205-917-1 208-96-8 anthracene		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
		204-371-1 120-12-7		CO.OO IIIg/kg		CO.OO IIIg/kg	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	I conc.	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracend	e 200-280-6	56-55-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
17		benzo[a]pyrene; be		50-32-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
18		benzo[b]fluoranthe		205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
19	0	benzo[ghi]perylene		191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranther		207-08-9	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
21		chrysene	205-923-4	218-01-9	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
22		dibenz[a,h]anthrace		53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
23	0	fluoranthene	205-912-4	206-44-0		0.07	mg/kg		0.07	mg/kg	0.000007 %		
24	0	fluorene	201-695-5	86-73-7		0.07	mg/kg		0.07	mg/kg	0.000007 %		
25	0	indeno[123-cd]pyre		193-39-5		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8		0.18	mg/kg		0.18	mg/kg	0.000018 %		
27		naphthalene	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
28		pyrene				0.05	mg/kg		0.05	mg/kg	0.000005 %		
		204-927-3 129-00-0								Total:	0.0322 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS07

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS07 Chapter: Sample Depth: 0.60 m

Entry:

Moisture content:

8.7%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 8.7% No Moisture Correction applied (MC)

		ile content. 6.7 /8 No Moisture Correction applied	, -			, ,				,	
#		Determinand EU CLP index	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		8.6	рН		8.6	рН	8.6 pH		
	_	PH	-								
2	4	arsenic { arsenic trioxide }		5.7	mg/kg	1.32	7.526	mg/kg	0.000753 %		
	1 -	033-003-00-0 215-481-4 1327-53-3	-								
3	4	cadmium { cadmium sulfide }	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
	-	048-010-00-4 215-147-8 1306-23-6	+								
4	≪\$	chromium in chromium(III) compounds {		6.1	mg/kg	1.462	8.915	mg/kg	0.000892 %		
		215-160-9 1308-38-9									
5	4	copper { copper sulphate pentahydrate }		4.9 ı	mg/kg	3.929	19.252	mg/kg	0.00193 %		
		029-023-00-4 231-847-6 7758-99-8	\downarrow								
6	æ\$	lead { lead chromate }	_ 1	8.3	mg/kg	1.56	12.946	mg/kg	0.00083 %		
	_	082-004-00-2 231-846-0 7758-97-6									
7	æ\$	mercury { mercury dichloride }		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< td=""></lod<>
	-	080-010-00-X 231-299-8 7487-94-7									
8	4	nickel { nickel chromate }		5.2	mg/kg	2.976	15.477	mg/kg	0.00155 %		
		028-035-00-7 238-766-5 14721-18-7									
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8									
10	4	zinc { zinc chromate }		33 1	mg/kg	2.774	91.547	mg/kg	0.00915 %		
		024-007-00-3 236-878-9 13530-65-9			mg/ng			g/Ng	0.00010 70		
11		chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
<u> </u>		024-001-00-0 215-607-8 1333-82-0									
12	0	TPH (C6 to C40) petroleum group		<10 ı	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
	<u> </u>	TPH									
13	0	acenaphthene 201-469-6 83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	1	LOT 07 1 1 1 1 20 1 2 - 1									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	('ompound conc	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-033-00-9	200-280-6	56-55-3		y ,		3 3			
17		benzo[a]pyrene; be	nzo[def]chrysene			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ		601-032-00-3	200-028-5	50-32-8		10.00g///		10.00g/g	10.000000 /0		1202
18		benzo[b]fluoranther	ne			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
L		601-034-00-4	205-911-9	205-99-2		10.00g///		10.00g/g	10.000000 /0		1202
19	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranther	ne			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
20		601-036-00-5	205-916-6	207-08-9	1	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
21		chrysene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
2		601-048-00-0	205-923-4	218-01-9	1	<0.05 IIIg/K(<0.05 Hig/kg	<0.000005 %		< LOD
22		dibenz[a,h]anthrace	ene			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
22		601-041-00-2	200-181-8	53-70-3	1	<0.05 Hig/κξ		<0.05 Hig/kg	<0.000003 /8		\ LOD
23	0	fluoranthene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
23			205-912-4	206-44-0	1	<0.05 IIIg/κξ		<0.05 Hig/kg	<0.000003 /8		\ LOD
24	0	fluorene	201 205 5	100 70 7		0.1 mg/kg		0.1 mg/kg	0.00001 %		
_			201-695-5	86-73-7	+					\vdash	
25	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5	-	<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
26	8	phenanthrene				0.12 mg/kg		0.12 mg/kg	0.000012 %		
Ľ			201-581-5	85-01-8		0.12 mg/ng		0.12 mg/ng	0.000012 /0		
27		naphthalene				<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ		601-052-00-2	202-049-5	91-20-3		Tig/Kg			15700000 70		,
28	0	pyrene	204-927-3	100.00.0		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
			204-927-3	129-00-0				Total	0.0166 %		
L								IUlai	. 0.0100 /6	\perp	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS09

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS09 Chapter: Sample Depth: Entry:

from contaminated sites) try: 17 05 04 (Soil and stones

 $17\ 05\ 04$ (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 4.9%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 4.9% No Moisture Correction applied (MC)

			_							_	
#		Determinand EU CLP index	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		8.4	рН		8.4	рН	8.4 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0		5.7	mg/kg	1.32	7.526	mg/kg	0.000753 %		
3	æ	cadmium { cadmium sulfide } 048-010-00-4	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< th=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		5.4	mg/kg	1.462	7.892	mg/kg	0.000789 %		
5	4	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		4.8	mg/kg	3.929	18.859	mg/kg	0.00189 %		
6	æ	lead { lead chromate } 082-004-00-2	_ 1	5.9	mg/kg	1.56	9.203	mg/kg	0.00059 %		
7	æ	mercury { mercury dichloride } 080-010-00-X		<0.3	mg/kg	1.353	<0.406	mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	æ	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		4.6	mg/kg	2.976	13.691	mg/kg	0.00137 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
	_	034-002-00-8					·				
10	4	zinc { zinc chromate } 024-007-00-3		25	mg/kg	2.774	69.354	mg/kg	0.00694 %		
11	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< th=""></lod<>
	-	024-001-00-0 215-607-8 1333-82-0 TPH (C6 to C40) petroleum group	+								
12	0	TPH	-	<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
13	9	acenaphthene 201-469-6 83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracend	e 200-280-6	56-55-3		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
17		benzo[a]pyrene; be		50-32-8		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
18		benzo[b]fluoranthe		205-99-2		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
19	0	benzo[ghi]perylene		191-24-2	-	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranther		207-08-9	-	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
21		chrysene	205-923-4	218-01-9	-	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
22		dibenz[a,h]anthrace		53-70-3		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
23	0	fluoranthene	205-912-4	206-44-0	_	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
24	0	fluorene	201-695-5	86-73-7		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
25	0	indeno[123-cd]pyre		193-39-5		<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8		0.1 r	mg/kg		0.1	mg/kg	0.00001 %		
27		naphthalene	202-049-5	91-20-3	-	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
28		pyrene			-	<0.05 r	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		204-927-3 129-00-0								Total:	0.0138 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS12

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS12 Chapter: Sample Depth: 0.20 m

Entry:

Moisture content:

7.9%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 7.9% No Moisture Correction applied (MC)

								Б	
#		Determinand EU CLP index	CLP Note	User entered data	Conv Facto		Classification value	MC Applied	Conc. Not Used
1	0	pH PH		9.6 pH		9.6 pH	9.6 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		12 mg/kg	1.32	15.844 mg/kg	0.00158 %		
3	4	cadmium { cadmium sulfide } 1306-23-6	1	0.5 mg/kg	1.285	0.643 mg/kg	0.00005 %		
4	«	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9	-	15 mg/kg	1.462	2 21.923 mg/kg	0.00219 %		
5	æ å	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		16 mg/kg	3.929	62.865 mg/kg	0.00629 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	51 mg/kg	1.56	79.551 mg/kg	0.0051 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		13 mg/kg	2.976	38.691 mg/kg	0.00387 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
	-	034-002-00-8							
10	4	zinc { <mark>zinc chromate</mark> } 024-007-00-3		150 mg/kg	2.774	4 416.122 mg/kg	0.0416 %		
11	æ å	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	3 <2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	┢						
12	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	9	acenaphthene		0.25 mg/kg		0.25 mg/kg	0.000025 %		
14	9	acenaphthylene 205-917-1 208-96-8		0.1 mg/kg		0.1 mg/kg	0.00001 %		
15	0	anthracene 204-371-1 120-12-7		0.29 mg/kg		0.29 mg/kg	0.000029 %		

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracene	e 200-280-6	56-55-3		1.1 r	mg/kg		1.1	mg/kg	0.00011 %		
17		benzo[a]pyrene; be		50-32-8		1.2	mg/kg		1.2	mg/kg	0.00012 %		
18		benzo[b]fluoranthe		205-99-2		1.4 r	mg/kg		1.4	mg/kg	0.00014 %		
19	0	benzo[ghi]perylene		191-24-2		0.0	mg/kg		0.9	mg/kg	0.00009 %		
20		benzo[k]fluoranther		207-08-9		0.6	mg/kg		0.6	mg/kg	0.00006 %		
21		chrysene				1.1 r	mg/kg		1.1	mg/kg	0.00011 %		
22		dibenz[a,h]anthrace		218-01-9		0.2	mg/kg		0.2	mg/kg	0.00002 %		
23	9	fluoranthene	200-181-8	53-70-3		2.4	mg/kg		2.4	mg/kg	0.00024 %		
24	0	fluorene	205-912-4	206-44-0	+	0.23	mg/kg		0.23	mg/kg	0.000023 %		
25	0	indeno[123-cd]pyre		86-73-7	+	0.79	mg/kg		0.79	mg/kg	0.000079 %		
26	0	phenanthrene	205-893-2	193-39-5		1 r	mg/kg		1	mg/kg	0.0001 %		
27		naphthalene	201-581-5	85-01-8			mg/kg		0.05	mg/kg	0.000005 %		
28		601-052-00-2 pyrene	202-049-5	91-20-3	-				2.3		0.00023 %		
28			204-927-3	129-00-0		2.3	mg/kg		۷.۵	mg/kg Total:	0.00023 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS13

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS13 Chapter: Sample Depth: 0.60 m

Entry:

Moisture content:

6.4%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 6.4% No Moisture Correction applied (MC)

#		Determinand EU CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH	-	8.7 pH		8.7 pH	8.7 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0		5.3 mg/kg	1.32	6.998 mg/kg	0.0007 %		
3	«	cadmium { cadmium sulfide } 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< th=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9	_	6.8 mg/kg	1.462	9.939 mg/kg	0.000994 %		
5	4	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		6.6 mg/kg	3.929	25.932 mg/kg	0.00259 %		
6	«	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	10 mg/kg	1.56	15.598 mg/kg	0.001 %		
7	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		5.8 mg/kg	2.976	17.262 mg/kg	0.00173 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>
	_	034-002-00-8							
10	s i	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		43 mg/kg	2.774	119.288 mg/kg	0.0119 %		
11	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< th=""></lod<>
	0	024-001-00-0 215-607-8 1333-82-0 TPH (C6 to C40) petroleum group							
12		TPH (C6 to C40) petroleum group		410 mg/kg		410 mg/kg	0.041 %		
13	0	acenaphthene 201-469-6 83-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
14	0	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracene 601-033-00-9 200-280-6				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
17		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
18		benzo[b]fluoranthene 601-034-00-4				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
19	0	benzo[ghi]perylene		191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranther		207-08-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
21		chrysene	205-970-0	218-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
22		dibenz[a,h]anthrace	ene			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
23	0	fluoranthene	200-181-8	53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
24	0	fluorene		206-44-0		0.05	mg/kg		0.05	mg/kg	0.000005 %		
25	0	indeno[123-cd]pyre		86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
26	0	phenanthrene	205-893-2	193-39-5	-	0.12	mg/kg		0.12	mg/kg	0.000012 %		
27		naphthalene	201-581-5	85-01-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
28		pyrene	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
	204-927-3 129-00-0									Total:	0.0605 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free product hydrocarbons recorded during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.041%)

Page 16 of 25 0CKFL-QFNM0-TYR5X www.hazwasteonline.com

Classification of sample: WS14

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS14 Chapter: Sample Depth: Entry:

from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 7.9%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 7.9% No Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	Θ	pH PH	-	9.5 pH		9.5 pH	9.5 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		7 mg/kg	1.32	9.242 mg/kg	0.000924 %		
3	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	0.4 mg/kg	1.285	0.514 mg/kg	0.00004 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		9.9 mg/kg	1.462	14.469 mg/kg	0.00145 %		
5	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8			30 mg/kg	3.929	117.872 mg/kg	0.0118 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	26 mg/kg	1.56	40.555 mg/kg	0.0026 %		
7	4	mercury { mercury dichloride } 080-010-00-X		<0.3 mg/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< th=""></lod<>
8	4	nickel { nickel chromate } 028-035-00-7		7.4 mg/kg	2.976	22.024 mg/kg	0.0022 %		
9	æ\$	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>
		034-002-00-8							
10	≪,	zinc { <mark>zinc chromate</mark> } 024-007-00-3		120 mg/kg	2.774	332.898 mg/kg	0.0333 %		
11	æ	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	L						
12	0	TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	9			0.11 mg/kg		0.11 mg/kg	0.000011 %		
14	0	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	Classification value	MC Applied	Conc. Not Used	
16		benzo[a]anthracen				0.12	mg/kg		0.12	mg/kg	0.000012 %		
-			200-280-6	56-55-3	+								
17		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8		0.09	mg/kg		0.09	mg/kg	0.000009 %		
		benzo[b]fluoranthe		00-32-6	+								
18			205-911-9	205-99-2	-	0.17	mg/kg		0.17	mg/kg	0.000017 %		
-		benzo[ghi]perylene		200 00 2									
19		10 11 /	205-883-8	191-24-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
20		benzo[k]fluoranthe	ne		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>	
		601-036-00-5	205-916-6	207-08-9		VO.00	mg/ng		\(\tau_0.00\)	mg/kg	20.000000 70		\LOD
21		chrysene				0.16	mg/kg		0.16	mg/kg	0.000016 %		
			205-923-4	218-01-9									
22		dibenz[a,h]anthrac		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>		
			200-181-8	53-70-3	1								
23	•	fluoranthene	1005 040 4	1000 110		0.43	mg/kg		0.43	mg/kg	0.000043 %		
-			205-912-4	206-44-0	+							+	
24	0	fluorene	201-695-5	86-73-7	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
	_	indeno[123-cd]pyre		00-73-7	+								
25	0		205-893-2	193-39-5	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
	0	phenanthrene			t	2.22			2.00				
26		<u> </u>	201-581-5	85-01-8	1	0.33	mg/kg		0.33	mg/kg	0.000033 %		
27		naphthalene		•	ĺ	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		601-052-00-2	202-049-5	91-20-3		νο.υσ	mg/kg		νο.υσ	mg/kg	3.000000 /6		LOD
28	0	pyrene					mg/kg		0.35	mg/kg	0.000035 %		
Ĺ			204-927-3	129-00-0		0.35					9		
										Total:	0.0539 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS15

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS15 Chapter: Sample Depth: Entry:

from contaminated sites)
17 05 04 (Soil and stones

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 9.4%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 9.4% No Moisture Correction applied (MC)

		• • • • • • • • • • • • • • • • • • • •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
#		Determinand EU CLP index	CLP Note	User entered	I data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.8	рН		7.8	рН	7.8 pH		
2	æ \$	arsenic { arsenic trioxide } 033-003-00-0		7.3	mg/kg	1.32	9.638	mg/kg	0.000964 %		
3	æ	cadmium { cadmium sulfide } 1306-23-6 048-010-00-4 215-147-8 1306-23-6	_ 1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
4	æ\$	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		36	mg/kg	1.462	52.616	mg/kg	0.00526 %		
5	æ	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		18	mg/kg	3.929	70.723	mg/kg	0.00707 %		
6	æ			30	mg/kg	1.56	46.794	mg/kg	0.003 %		
7	æ	mercury { mercury dichloride } 080-010-00-X		0.4	mg/kg	1.353	0.541	mg/kg	0.0000541 %		
8	æ	nickel { nickel chromate } 028-035-00-7		34	mg/kg	2.976	101.193	mg/kg	0.0101 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8									
10	æ 🎉	zinc { zinc chromate } 024-007-00-3		70	mg/kg	2.774	194.19	mg/kg	0.0194 %		
11	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2	mg/kg	1.923	<2.308	mg/kg	<0.000231 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0									
12	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
13	0	acenaphthene 201-469-6 83-32-9		0.14	mg/kg		0.14	mg/kg	0.000014 %		
14	0	acenaphthylene 205-917-1 208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
15	0	anthracene 204-371-1 120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered da	ed data		Compound conc.		Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracen	e			<0.05 mg	/ka		<0.05	mg/kg	<0.00005 %		<lod< th=""></lod<>
L		601-033-00-9	200-280-6	56-55-3		10.00	, <u>9</u>				10.000000 /0		1.202
17		benzo[a]pyrene; be	enzo[def]chrysene			<0.05 mg	/ka		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ.		601-032-00-3	200-028-5	50-32-8		111g	,g		(0.00 mg/ng		10.000000 70		1202
18		benzo[b]fluoranthe				<0.05 mg	/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			205-911-9	205-99-2	_								
19	0	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.05 mg	/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranther	ne		<0.05 mg	/ka		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>	
		601-036-00-5	205-916-6	207-08-9		10.00	, <u>9</u>			9/119	10.000000 /0		1202
21		chrysene				<0.05 mg	/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		}	205-923-4	218-01-9	-								
22		dibenz[a,h]anthrace		<0.05 mg	/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>		
_		1	200-181-8	53-70-3	-								
23	•	fluoranthene	005 040 4	000 44 0		0.09 mg	/kg		0.09	mg/kg	0.000009 %		
<u> </u>		1	205-912-4	206-44-0	+							+	
24	•	fluorene	201-695-5	86-73-7		0.13 mg	/kg		0.13	mg/kg	0.000013 %		
		indeno[123-cd]pyre		00-73-7	+								
25	0		205-893-2	193-39-5	+	<0.05 mg	/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
26	0	phenanthrene				0.27 mg	/ka		0.27	mg/kg	0.000027 %		
			201-581-5	85-01-8		0.27 1119	/itg		0.27	mg/kg	0.000027 /8	\perp	
27		naphthalene				<0.05 mg	/ka		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
Ľ.		601-052-00-2	202-049-5	91-20-3		11.509	9		.0.00		111111111111111111111111111111111111111		
28	0	pyrene				0.05 mg	/kg		0.05	mg/kg	0.000005 %		
		204-927-3 129-00-0		0.00 1119/19				Total:					
				·						iolai:	0.0474 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS16

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS16 Chapter: Sample Depth: Entry:

from contaminated sites)
17 05 04 (Soil and stones

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 9.6%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 9.6% No Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	9	pH PH		7.7 pH		7.7 pH	7.7 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		6.9 mg/kg	1.32	9.11 mg/kg	0.000911 %		
3	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	0.3 mg/kg	1.285	0.386 mg/kg	0.00003 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		20 mg/kg	1.462	29.231 mg/kg	0.00292 %		
5	copper { copper sulphate pentahydrate } 029-023-00-4			25 mg/kg	3.929	98.226 mg/kg	0.00982 %		
6	æ\$	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	37 mg/kg	1.56	57.713 mg/kg	0.0037 %		
7	æ\$	mercury { mercury dichloride } 080-010-00-X		0.4 mg/kg	1.353	0.541 mg/kg	0.0000541 %		
8	æ\$	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		15 mg/kg	2.976	44.644 mg/kg	0.00446 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>
10	æ å	034-002-00-8 zinc { zinc chromate }		76 mg/kg	2.774	210.835 mg/kg	0.0211 %		
11	4	024-007-00-3 236-878-9 13530-65-9 chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.2 mg/kg	1.923	<2.308 mg/kg	<0.000231 %		<lod< td=""></lod<>
12	0	024-001-00-0 215-607-8 1333-82-0 TPH (C6 to C40) petroleum group		<10 mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13	0	acenaphthene 201-469-6 83-32-9		0.22 mg/kg		0.22 mg/kg	0.000022 %		
14	9	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
15	9	anthracene 204-371-1 120-12-7		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
16		benzo[a]anthracen				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			200-280-6	56-55-3									
17		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5			<0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>	
			200-028-5	50-32-8									
18		benzo[b]fluoranthe	ne			0.06	mg/kg		0.06	mg/kg	0.000006 %		
		601-034-00-4	205-911-9	205-99-2									
19	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
20		benzo[k]fluoranthene		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>		
_		601-036-00-5	205-916-6	207-08-9						99			
21		chrysene 601-048-00-0	205-923-4	218-01-9		0.06	mg/kg		0.06	mg/kg	0.000006 %		
				210-01-9	+							Н	
22		dibenz[a,h]anthrace	-	<0.05 ı	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
		fluoranthene	200-181-8	53-70-3	+								
23	•		205-912-4	206-44-0	-	0.13	mg/kg		0.13	mg/kg	0.000013 %		
\vdash		fluorene	205-912-4	200-44-0	+							+	
24	•		201-695-5	86-73-7	-	0.25	mg/kg		0.25	mg/kg	0.000025 %		
05	0	indeno[123-cd]pyre				0.05			0.05		0.000005.01		1.00
25			205-893-2	193-39-5	1	<0.05 ı	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26	0	phenanthrene				0.57	mg/kg		0.57	mg/kg	0.000057 %		
L			201-581-5	85-01-8		0.07	g/ing		0.57	mg/ng	0.000007 /6		
27		naphthalene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
Ĺ		601-052-00-2	202-049-5	91-20-3		10.00	9'9			9,9	,0		1202
28	0	pyrene	004 007 0	400.00.0		0.09	mg/kg		0.09	mg/kg	0.000009 %		
-		204-927-3 129-00-0							Total:	0.0445 %			
L										ioidi.	0.0443 /0		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **LOD**Selow limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non GB MCL determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

" chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

(enter justification for selecting this species)

cadmium {cadmium sulfide}

(enter justification for selecting this species)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

(enter justification for selecting this species)

copper {copper sulphate pentahydrate}

(enter justification for selecting this species)

lead {lead chromate}

(enter justification for selecting this species)

mercury {mercury dichloride}

(enter justification for selecting this species)

nickel {nickel chromate}

(enter justification for selecting this species)

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

(enter justification for selecting this species)

zinc {zinc chromate}

(enter justification for selecting this species)

chromium in chromium(VI) compounds {chromium(VI) oxide}

(enter justification for selecting this species)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021

HazWasteOnline Classification Engine Version: 2023.203.5693.10482 (22 Jul 2023)

HazWasteOnline Database: 2023.203.5693.10482 (22 Jul 2023)

Page 24 of 25 OCKFL-QFNM0-TYR5X www.hazwasteonline.com

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

Appendix E

Patrick Parsons Generic Assessment Criteria (GAC)

Generic Assessment Critera

					Residential without Homegrown Produce			Allotments			Commercial			Public Open Space Near Residential Housing			Public Open Space Park			
	SOM %	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	
	Arsenic		37			40			43			640			79			170		
int)	Beryllium		1.7			1.7			35			12			2.2			63		
nde	Boron		290			11000			45			240000			21000			46000		
ede	Cadmium		11			85			1.9			190			120			555		
ηdρ	Chromium (III)		910			910			18000			8600			1500			33000		
	Chromium (VI) (Hexavalent)		6			6			1.8			33			7.7			220		
	Copper		2400			7100			520			68000			12000			44000		
	Elemental Mercury		1.2			1.2			21			58			16			30		
nic	Inorganic Mercury		40			56			19			1100			120			240		
orge	Methylmercury		11			15			6			320			40			68		
l n	Lead		200			310			80			2300			630			1300		
Ф	NICKEI		130			180			53			980			230			800		
als	Selenium		250			430			88			12000			1100			1800		
Met	Vanadium		410			1200			91			9000			2000			5000		
	Zinc		3700			40000			620			730000			81000			170000		
	Acenaphthene	210	510	1100	3000	4700	6000	34	85	200	84000	97000	100000	15000	15000	15000	29000	30000	30000	
	Acenaphthylene	170	420	920	2900	4600	6000	28	69	160	83000	97000	100000	15000	15000	15000	29000	30000	30000	
	Anthracene	2400	5400	11000	31000	35000	37000	380	950	2200	520000	540000	540000	74000	74000	74000	150000	150000	150000	
	Benzo[a]anthracene	7.2	11	13	11	14	15	2.9	6.5	13	170	170	180	29	29	29	49	56	62	
S	Benzo[a]pyrene	2.2	2.7	3	3.2	3.2	3.2	0.97	2.0	3.5	35	35	36	5.7	5.7	5.7	11	12	13	
_	Benzo[b]fluoranthene	2.6	3.3	3.7	3.9	4.0	4.0	0.99	2.1	3.9	44	44	45	7.1	7.2	7.2	13	15	16	
_	Benzo[ghi]perylene	320	340	350	360	360	360	290	470	640	3900	4000	4000	640	640	640	1400	1500	1600	
0	Benzo[k]fluoranthene	77	93	100	110	110	110	37	75	130	1200	1200	1200	190	190	190	370	410	440	
	Chrysene	15	22	27	30	31	32	4.1	9.4	19	350	350	350	57	57	57	93	110	120	
	Dibenz[ah]anthracene	0.24	0.28	0.3	0.31	0.32	0.32	0.14	0.27	0.43	3.5	3.6	3.6	0.57	0.57	0.58	1.1	1.3	1.4	
_ ≽	Fluoranthene	280	560	890	1500	1600	1600	52	130	290	23000	23000	23000	3100	3100	3100	6300	6300	6400	
<u></u>	Fluorene	170	400	860	2800	3800	4500	27	67	160	63000	68000	71000	9900	9900	9900	20000	20000	20000	
Po	Indeno[123-cd]pyrene	27	36	41	45	46	46	9.5	21	39	500	510	510	82	82	82	150	170	180	
	Naphthalene	2.3	5.6	13	2.3	5.6	13	4.1	10	24	190	460	1100	4900	4900	4900	1200	1900	3000	
	Phenanthrene	95	220	440	1300	1500	1500	15	38	90	22000	22000	23000	3100	3100	3100	6200	6200	6300	
	Pyrene	620	1200	2000	3700	3800	3800	110	270	620	54000	54000	54000	7400	7400	7400	15000	15000	15000	
	Coal Tar (B[a]P as surrogate marker)	0.79	0.98	1.1	1.2	1.2	1.2	0.32	0.67	1.2	15	15	15	2.2	2.2	2.2	4.4	4.7	4.8	
	Benzene	0.087	0.17	0.37	0.38	0.7	1.4	0.017	0.034	0.075	27	47	90	72	72	73	90	100	110	
	Toluene	130	290	660	880	1900	3900	22	51	120	56000	110000	180000	56000	56000	56000	87000	95000	100000	
	Ethylbenzene	47	110	260	83	190	440	16	39	91	5700	13000	27000	24000	24000	25000	17000	22000	27000	
	m-Xylene	59	140	320	82	190	450	31	74	170	6200	14000	31000	41000	42000	43000	17000	24000	32000	
	o-Xylene	60	140	330	88	210	480	28	67	160	6600	15000	33000	41000	42000	43000	17000	24000	33000	
	p-Xylene	56	130	310	79	180	430	29	69	160	5900	14000	30000	41000	42000	43000	17000	23000	31000	
	Aliphatic EC 5-6	42	78	160	42	78	160	730	1700	3900	3200	5900	12000	570000	590000	600000	95000	130000	180000	
SI	Aliphatic EC >6-8	100	230	530	100	230	530	2300	5600	13000	7800	17000	40000	600000	610000	620000	150000	220000	320000	
bor	Aliphatic EC >8-10	27	65	150	27	65	150	320	770	1700	2000	4800	11000	13000	13000	13000	14000	18000	21000	
_ ≒	Aliphatic EC >10-12	130	330	760	130	330	770	2200	4400	7300	9700	23000	47000	13000	13000	13000	21000	23000	24000	
/drc	Aliphatic EC >12-16	1100	2400	4300	1100	2400	4400	11000	13000	13000	59000	82000	90000	13000	13000	13000	25000	25000	26000	
1 4	Aliphatic EC >16-35	65000	92000	110000	65000	92000	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000	
_	Aliphatic EC >35-44	65000	92000	110000	65000	92000	110000	260000	270000	270000	1600000	1700000	1800000	250000	250000	250000	450000	480000	490000	
_	Aromatic EC 5-7 (benzene)	70	140	300	370	690	1400	13	27	57	26000	46000	86000	56000	56000	56000	76000	84000	92000	
(a)	Aromatic EC >7-8 (toluene)	130	290	660	860	1800	3900	22	51	120	56000	110000	180000	56000	56000	56000	87000	95000	100000	
	Aromatic EC >8-10	34	83	190	47	110	270	8.6	21	51	3500	8100	17000	5000	5000	5000	7200	8500	9300	
	Aromatic EC >10-12	74	180	380	250	590	1200	13	31	74	16000	28000	34000	5000	5000	5000	9200	9700	10000	
	Aromatic EC >12-16	140	330	660	1800	2300	2500	23	57	130	36000	37000	38000	5100	5100	5000	10000	10000	10000	
	Aromatic EC >16-21	260	540	930	1900	1900	1900	46	110	260	28000	28000	28000	3800	3800	3800	7600	7700	7800	
	Aromatic EC >21-35	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	
	Aromatic EC >35-44	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	
	Petroleum Hydrocarbons EC >44-70	1600	1800	1900	1900	1900	1900	1200	2100	3000	28000	28000	28000	3800	3800	3800	7800	7800	7900	

UK Locations

Ash Vale Birmingham London Wakefield

